已知a>0,函數(shù)f(x)=
x22
+2a(a+1)lnx-(3a+1)x

(1)若函數(shù)f(x)在x=1處的切線與直線y-3x=0平行,求a的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)在(1)的條件下,若對(duì)任意x∈[1,2],f(x)-b2-6b≥0恒成立,求實(shí)數(shù)b的取值組成的集合.
分析:(1)f′(x)=x+
2a(a+1)
x
-(3a+1)
,由已知f'(1)=3,能求出a的值.
(2)由f′(x)=x+
2a(a+1)
x
-(3a+1)=
x2-(3a+1)x+2a(a+1)
x
=
(x-2a)[x-(a+1)]
x
,根據(jù)a的取值范圍進(jìn)行分類(lèi)討論,能求出函數(shù)f(x)的單調(diào)遞增區(qū)間.
(3)當(dāng)a=
3
2
時(shí),f(x)=
x2
2
+
15
2
lnx-
11x
2
,由該函數(shù)在(0,
5
2
)
上單調(diào)遞增,知在區(qū)間[1,2]上f(x)的最小值只能在x=1處取到,由此能求出實(shí)數(shù)b的取值組成的集合.
解答:解:(1)f′(x)=x+
2a(a+1)
x
-(3a+1)
,
由已知f'(1)=3,即2a2-a=3,2a2-a-3=0,
解得a=
3
2
或a=-1.…(2分)
又因?yàn)閍>0,所以a=
3
2
.…(3分)
(2)函數(shù)f(x)的定義域?yàn)椋?,+∞),…(4分)
f′(x)=x+
2a(a+1)
x
-(3a+1)=
x2-(3a+1)x+2a(a+1)
x
=
(x-2a)[x-(a+1)]
x

①當(dāng)2a>a+1,即a>1時(shí),
由f'(x)>0得x>2a或0<x<a+1,
因此函數(shù)f(x)的單調(diào)增區(qū)間是(0,a+1)和(2a,+∞).
②當(dāng)2a<a+1,即0<a<1時(shí),
由f'(x)>0得x>a+1或0<x<2a,
因此函數(shù)f(x)的單調(diào)增區(qū)間是(0,2a)和(a+1,+∞).
③當(dāng)2a=a+1,即a=1時(shí)f'(x)≥0恒成立(只在x=2a處等于0),
所以函數(shù)在定義域(0,+∞)上是增函數(shù).…(7分)
綜上:①當(dāng)a>1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間是(0,a+1)和(2a,+∞);
②當(dāng)0<a<1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間是(0,2a)和(a+1,+∞);
③當(dāng)a=1時(shí),函數(shù)f(x)的單調(diào)增區(qū)間是(0,+∞).…(8分)
(3)當(dāng)a=
3
2
時(shí),f(x)=
x2
2
+
15
2
lnx-
11x
2
,
由(2)知該函數(shù)在(0,
5
2
)
上單調(diào)遞增,
因此在區(qū)間[1,2]上f(x)的最小值只能在x=1處取到.…(10分)
f(1)=
1
2
-
11
2
=-5
,
若要保證對(duì)任意x∈[1,2],f(x)-b2-6b≥0恒成立,
應(yīng)該有-5≥b2+6b,即b2+6b+5≤0,解得-5≤b≤-1,
因此實(shí)數(shù)b的取值組成的集合是{b|-5≤b≤-1}.…(12分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,考查函數(shù)的增區(qū)間的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想、分類(lèi)討論思想、導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當(dāng)a=
1
8
時(shí)
①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案