【題目】已知橢圓的焦距為,且過(guò)點(diǎn)

1)求C的方程;

2)若直線lC有且只有一個(gè)公共點(diǎn),l與圓x2+y26交于AB兩點(diǎn),直線OA,OB的斜率分別記為k1,k2.試判斷k1k2是否為定值,若是,求出該定值;否則,請(qǐng)說(shuō)明理由.

【答案】1;(2k1k2為定值

【解析】

1)由題意可得關(guān)于ab,c的方程組,求解a,b,c的值,即可得到橢圓的方程;

2)①當(dāng)過(guò)點(diǎn)P的直線斜率不存在時(shí),直線的方程為x±2,求得,②當(dāng)過(guò)P的直線斜率存在時(shí),設(shè)其方程為ykx+m,聯(lián)立直線方程與橢圓方程,由判別式等于0可得m24k2+2,聯(lián)立直線方程與橢圓方程,利用根與系數(shù)的關(guān)系結(jié)合斜率公式可得為定值

1)由題意,得

解得.

∴橢圓C的方程為.

2k1k2為定值

理由如下:

①當(dāng)過(guò)點(diǎn)P的直線斜率不存在時(shí),直線的方程為x=±2

當(dāng)x2時(shí),,則

當(dāng)時(shí),,則.

②當(dāng)過(guò)P的直線斜率存在時(shí),設(shè)其方程為,

聯(lián)立,得

由題意,得,

聯(lián)立,得

所以

綜上,為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的方程,焦點(diǎn)為,已知點(diǎn)上,且點(diǎn)到點(diǎn)的距離比它到軸的距離大1.

(1)試求出拋物線的方程;

(2)若拋物線上存在兩動(dòng)點(diǎn)在對(duì)稱軸兩側(cè)),滿足為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)作直線交兩點(diǎn),若,線段上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形,且ABDC,,平面平面

(Ⅰ)證明:平面平面;

(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在算法中分別表示取商和取余數(shù).為了驗(yàn)證三位數(shù)卡普雷卡爾數(shù)字黑洞(即輸入一個(gè)無(wú)重復(fù)數(shù)字的三位數(shù),經(jīng)過(guò)如圖的有限次的重排求差計(jì)算,結(jié)果都為495.小明輸入,則輸出的

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門必選科目外,考生再?gòu)奈锢、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門科目綜合成績(jī)按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績(jī)雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。

A.甲的物理成績(jī)領(lǐng)先年級(jí)平均分最多

B.甲有2個(gè)科目的成績(jī)低于年級(jí)平均分

C.甲的成績(jī)從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史

D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)為自然對(duì)數(shù)的底數(shù)),時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn).

1)求的取值范圍;

2)設(shè),的兩個(gè)零點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{}的首項(xiàng)a12,前n項(xiàng)和為,且數(shù)列{}是以為公差的等差數(shù)列·

1)求數(shù)列{}的通項(xiàng)公式;

2)設(shè),,數(shù)列{}的前n項(xiàng)和為

①求證:數(shù)列{}為等比數(shù)列,

②若存在整數(shù)mn(mn1),使得,其中為常數(shù),且2,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案