【題目】已知雙曲線的中心在原點,焦點為,且離心率.

(1)求雙曲線的方程;

(2)求以點為中點的弦所在的直線方程.

【答案】(1);(2).

【解析】

1)根據(jù)焦點坐標(biāo)求得,根據(jù)離心率及求得的值,進(jìn)而求得雙曲線的標(biāo)準(zhǔn)方程.2)設(shè)出兩點的坐標(biāo),利用點差法求得弦所在直線的斜率,再由點斜式求得弦所在的直線方程.

(1) 由題可得,,∴,

所以雙曲線方程 .

(2)設(shè)弦的兩端點分別為,,

則由點差法有: , 上下式相減有:

又因為為中點,所以,,

,所以由直線的點斜式可得,

即直線的方程為.

經(jīng)檢驗滿足題意.

【點睛】

本小題主要考查雙曲線標(biāo)準(zhǔn)方程的求法,考查利用點差法求解有關(guān)弦的中點有關(guān)的問題,屬于中檔題.

型】解答
結(jié)束】
19

【題目】某投資公司計劃投資兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為.(注:利潤與投資金額單位:萬元)

(1)該公司已有100萬元資金,并全部投入,兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

【答案】(1);(2)20,28.

【解析】

1)設(shè)投入產(chǎn)品萬元,則投入產(chǎn)品萬元,根據(jù)題目所給兩個產(chǎn)品利潤的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤總和的表達(dá)式.2)利用基本不等式求得利潤的最大值,并利用基本不等式等號成立的條件求得資金的分配方法.

(1)其中萬元資金投入產(chǎn)品,則剩余的(萬元)資金投入產(chǎn)品,

利潤總和為: ,

(2)因為,

所以由基本不等式得:,

當(dāng)且僅當(dāng)時,即:時獲得最大利潤28萬.

此時投入A產(chǎn)品20萬元,B產(chǎn)品80萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項和為,數(shù)列的前項和為,下列說法錯誤的是( )

A. 有最大值,則也有最大值

B. 有最大值,則也有最大值

C. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

D. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)fx=a-x|x|,常數(shù)aR,且關(guān)于x的不等式mx2+mf[fx]對所有的x[-2,2]恒成立,則實數(shù)m的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,,且,數(shù)列滿足,,對任意,都有.

1)求數(shù)列的通項公式;

2)令若對任意的,不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓上一動點,為坐標(biāo)原點,則線段中點的軌跡方程為_______

【答案】

【解析】

設(shè)出點的坐標(biāo),由此得到點的坐標(biāo),將點坐標(biāo)代入橢圓方程,化簡后可得點的軌跡方程.

設(shè),由于中點,故,代入橢圓方程得,化簡得.點的軌跡方程為.

【點睛】

本小題主要考查代入法求動點的軌跡方程,考查中點坐標(biāo),屬于基礎(chǔ)題.

型】填空
結(jié)束】
15

【題目】設(shè)是雙曲線:的右焦點,左支上的點,已知,則周長的最小值是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點P到定點的距離比它到直線的距離小2,設(shè)動點P的軌跡為曲線C

求曲線C的方程;

若直線與曲線C和圓從左至右的交點依次為A,BC,D的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當(dāng)時,求的解集;

(Ⅱ)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)的數(shù)據(jù)如下表:

時間

5

11

25

種植成本

15

10.8

15

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;

(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.

查看答案和解析>>

同步練習(xí)冊答案