【題目】已知函數(shù)f(x)=(x﹣t)|x|(t∈R).
(1)討論y=f(x)的奇偶性;
(2)當(dāng)t>0時,求f(x)在區(qū)間[﹣1,2]的最小值h(t).

【答案】
(1)解:當(dāng)t=0時,f(x)=x|x|,f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),則f(x)為奇函數(shù);

當(dāng)t≠0時,f(﹣x)=(﹣x﹣t)|﹣x|≠±f(x),則f(x)為非奇非偶函數(shù)


(2)解:

當(dāng) ,即t≥4時,f(x)在[﹣1,0]上單調(diào)遞增,在[0,2]上單調(diào)遞減,

所以 ;

當(dāng) ,即0<t<4時,f(x)在[﹣1,0]和 單調(diào)遞增,在 上單調(diào)遞減,

所以 ,

綜上所述,h(t)=


【解析】(1)討論t=0和t≠0時,f(﹣x)與f(x)的關(guān)系,即可判斷奇偶性;(2)求出f(x)的分段形式,討論t≥4時,0<t<4時,函數(shù)的單調(diào)性,即可得到最小值.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲),還要掌握函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為頂點的六面體中, 均為等邊三角形,且平面平面, 平面 , .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAD底面ABCD, ;

(1)求證:平面PAB平面PCD;

(2)若過點B的直線垂直平面PCD,求證: //平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X<6)=( )
A.0.1358
B.0.1359
C.0.2716
D.0.2718

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列對于確定的正整數(shù),若存在正整數(shù)使得成立,則稱數(shù)列為“階可分拆數(shù)列”.

(1)設(shè) 是首項為2,公差為2的等差數(shù)列,證明為“3階可分拆數(shù)列”;

(2)設(shè)數(shù)列的前項和為,若數(shù)列為“階可分拆數(shù)列”,求實數(shù)的值;

(3)設(shè),試探求是否存在使得若數(shù)列為“階可分拆數(shù)列”.若存在,請求出所有,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax﹣ax+2(a>0,且a≠1),若g(2)=a,則f(2)的值為(
A.
B.2
C.
D.a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4|x|+3,x∈R.
(1)判斷函數(shù)的奇偶性并將函數(shù)寫成分段函數(shù)的形式;
(2)畫出函數(shù)的圖象,根據(jù)圖象寫出它的單調(diào)區(qū)間;

(3)若函數(shù)f(x)的圖象與y=a的圖象有四個不同交點,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】擲兩顆質(zhì)地均勻的骰子,在已知它們的點數(shù)不同的條件下,有一顆是6點的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距離

(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案