【題目】已知R上的奇函數f(x)和偶函數g(x)滿足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,則f(2)的值為(
A.
B.2
C.
D.a2
科目:高中數學 來源: 題型:
【題目】一個袋子中裝有三個編號分別為1,2,3的紅球和三個編號分別為1,2,3的白球,三個紅球按其編號分別記為a1 , a2 , a3 , 三個白球按其編號分別記為b1 , b2 , b3 , 袋中的6個球除顏色和編號外沒有任何差異,現從袋中一次隨機地取出兩個球,
(1)列舉所有的基本事件,并寫出其個數;
(2)規(guī)定取出的紅球按其編號記分,取出的白球按其編號的2倍記分,取出的兩個球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從1,3,5,7,9這五個數中,每次取出兩個不同的數分別記為a,b,共可得到lga﹣lgb的不同值的個數是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣t)|x|(t∈R).
(1)討論y=f(x)的奇偶性;
(2)當t>0時,求f(x)在區(qū)間[﹣1,2]的最小值h(t).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數x(單位:千冊)之間的關系,在印制某種書籍時進行了統(tǒng)計,相關數據見下表:
根據以上數據,技術人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:
為了評價兩種模型的擬合效果,完成以下任務:
(1)(ⅰ)完成下表(計算結果精確到0.1):
(ⅱ)分別計算模型甲與模型乙的殘差平方和及,并通過比較,的大小,判斷哪個模型擬合效果更好.
(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據市場調查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0
(1)求證:f(x)是奇函數;
(2)若 ,試求f(x)在區(qū)間[﹣2,6]上的最值;
(3)是否存在m,使f(2( )2﹣4)+f(4m﹣2( ))>0對任意x∈[1,2]恒成立?若存在,求出實數m的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com