如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,E為AD上的點,EF⊥BC,垂足為F,沿EF將矩形ABFE折起,使二面角A-EF-C的大小為60°,連結AD,AC,BC.
(Ⅰ)若M為FC的中點,求證:AC∥平面BEM;
(Ⅱ)求直線CD與平面ABFE所成角的正弦值.
考點:直線與平面所成的角,直線與平面平行的判定
專題:空間位置關系與距離,空間角
分析:(Ⅰ)連結AF交BE于N,連結MN,由已知得MN∥AC,由此能證明AC∥平面BEM.
(Ⅱ)過E作EG∥DC交FC于G,則直線CD與平面ABFE所成角就是EG與平面ABFE所成角,由此能求出直線CD與平面ABFE所成角的正弦值.
解答: (Ⅰ)證明:連結AF交BE于N,連結MN,
則N是AF的中點,又因為M為FC的中點,
則MN∥AC,
因為MN?平面BEM,AC?平面BEM,
所以AC∥平面BEM.

(Ⅱ)解:過E作EG∥DC交FC于G,
則直線CD與平面ABFE所成角就是EG與平面ABFE所成角,
過G作GH⊥BF于H,連結EH,
因為EF⊥BF,EF⊥CF,BF∩CF=F,
所以,∠BFC=60°,EF⊥平面BFC,
又GH?平面BFC,所以EF⊥GH,則GH⊥平面AEFB,
故∠GEH就是EG與平面ABFE所成角,
在直角△EFG中,EG=
2
FG
,
在直角△HFG中,GH=
3
2
FG
,即GH=
6
4
EG
,
在直角△EGH中,sin∠GEH=
GH
EG
=
6
4
,
即直線CD與平面ABFE所成角的正弦值為
6
4
點評:本題考查直線與平面垂直的判定定理、平面與平面垂直的性質(zhì)定理、勾股定理、二面角的求解等基礎知識和空間向量的立體幾何中的應用,意在考查方程思想、等價轉(zhuǎn)化思想等數(shù)學思想方法和考生的空間想象能力、邏輯推理能力和運算求解能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等腰Rt△ABC一直角邊在平面α內(nèi),斜邊與平面α成30°,則另一直角邊與平面α所成角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知函數(shù)f(x)=sinωx+
3
cosωx(ω>0),f(
π
6
)+f(
π
2
)=0,且f(x)在區(qū)間(
π
6
,
π
2
),上遞減,則ω=( 。
A、3B、2C、6D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(1)=1,f(x)=
f(x-1)+x,x為奇數(shù)
f(x-1)+2x,x為偶數(shù)
(x=2,3,…),m∈N+,則f(2m)=(  )
A、2m+1
B、
11
2
m-6
C、
5,m=1
4m2-3m+6,m≠1
D、3m2+2m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐中有四條棱長為4,兩條棱長為a,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點)上一個動點,設
AP
=x
AD
,
PB
PC
=y,對于函數(shù)y=f(x),給出以下四個結論:
①當a=2時,函數(shù)的值域為[1,4];
②?a∈(0,+∞),都有f(1)=1成立;
③?a∈(0,+∞),函數(shù)f(x)的最大值都等于4;
④若f(x)在(0,1)上單調(diào)減,則a∈(0,
2
].
其中所有正確結論的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx•cos(x-
π
6
)
+cos2x-
1
2

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心.
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=
1
2
,b+c=3,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(2sin(x+
π
3
),-1),
b
=(2cosx,
3
),設函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期
(2)若2f(x)-m+1=0在[0,
4
]內(nèi)有兩個相異的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的三角形ABC繞AB邊旋轉(zhuǎn)一周的幾何體的主視圖如圖所示,則該旋轉(zhuǎn)體的體積是
 

查看答案和解析>>

同步練習冊答案