【題目】已知函數(shù)、、,且都有,滿足的實(shí)數(shù)有且只有個,給出下述四個結(jié)論:

①滿足題目條件的實(shí)數(shù)有且只有個;②滿足題目條件的實(shí)數(shù)有且只有個;

上單調(diào)遞增;④的取值范圍是

其中所有正確結(jié)論的編號是( )

A.①④B.②③C.①②③D.①③④

【答案】D

【解析】

設(shè),由,得出,由題意得出為函數(shù)的最小值,為函數(shù)的最大值,作出函數(shù)的圖象,結(jié)合圖象得出,進(jìn)而對各結(jié)論進(jìn)行驗(yàn)證.

,當(dāng)時,.

設(shè)進(jìn)行替換,作出函數(shù)的圖象如下圖所示:

由于函數(shù)上滿足的實(shí)數(shù)有且只有個,

即函數(shù)上有且只有個零點(diǎn),

由圖象可知,解得,結(jié)論④正確;

由圖象知,上只有一個最小值點(diǎn),有一個或兩個最大值點(diǎn),結(jié)論①正確,結(jié)論②錯誤;

當(dāng)時,

,所以上遞增,

則函數(shù)上單調(diào)遞增,結(jié)論③正確.綜上,正確的有①③④.故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個命題

函數(shù)的最小正周期是

終邊在y軸上的角的集合是;

在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有一個公共點(diǎn);

把函數(shù);

中,若,則是等腰三角形

其中真命題的序號是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實(shí)數(shù),函數(shù)f(x)=aln x+x2-4x.

(1)是否存在實(shí)數(shù)a,使得f(x)在x=1處取得極值?證明你的結(jié)論;

(2)設(shè)g(x)=(a-2)x,若x0,使得f(x0)≤g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,為橢圓的右焦點(diǎn),,為橢圓的上、下頂點(diǎn),且的面積為

1)求橢圓的方程;

2)動直線與橢圓交于,兩點(diǎn),證明:在第一象限內(nèi)存在定點(diǎn),使得當(dāng)直線與直線的斜率均存在時,其斜率之和是與無關(guān)的常數(shù),并求出所有滿足條件的定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中a,.

1)求的單調(diào)區(qū)間;

2)若存在極值點(diǎn),且,其中,求證:;

3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;

2)若直線lykx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ||PQ|,點(diǎn)M的直角坐標(biāo)為(10),求△PMQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB為圓的一條直徑,其端點(diǎn)A,B在拋物線 上,且AB兩點(diǎn)到拋物線C焦點(diǎn)的距離之和為11.

1)求拋物線C的方程及直徑AB所在的直線方程;

2)過M點(diǎn)的直線l交拋物線CP,Q兩點(diǎn),拋物線CP,Q處的切線相交于N點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,分別為棱的中點(diǎn).

1)在上確定點(diǎn)M,使平面,并說明理由。

2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生,新生接待其實(shí)也是和社會溝通的一個平臺.校團(tuán)委、學(xué)生會從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

愿意

不愿意

男生

60

20

女生

40

40

1)通過估算,試判斷男、女哪種性別的學(xué)生愿意投入到新生接待工作的概率更大.

2)能否有99%的把握認(rèn)為,愿意參加新生接待工作與性別有關(guān)?

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案