橢圓中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,過(guò)橢圓左焦點(diǎn)F的直線交橢圓于P,Q兩點(diǎn),且OP⊥OQ.求橢圓離心率e的取值范圍.

答案:
解析:

解:=1,(a>b>0)

當(dāng)PQ⊥x軸時(shí),F(xiàn)(c,0),

|FP|=,又|FQ|=|FP|且OP⊥OQ,∴|OF|=|FP|

即c=∴ac=

當(dāng)PQ不垂直x軸時(shí),設(shè)PQ∶y=k(x+c)代入=1,(a>b>0)

解得    ①

解得<e<1

綜合上述情況得e的范圍是≤e<1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長(zhǎng)為2,右焦點(diǎn)為F,直線l:x=2與x軸相交于點(diǎn)E,
FE
=
OF
,過(guò)點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)求證:直線AC經(jīng)過(guò)線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長(zhǎng)為2,右焦點(diǎn)為F,右準(zhǔn)線l與x軸相交于點(diǎn)E,
FE
=
OF
,過(guò)點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(I)求橢圓的方程及離心率;
(II)當(dāng)|BC|=
1
3
|AD|
時(shí),求直線AB的方程;
(III)求證:直線AC經(jīng)過(guò)線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且經(jīng)過(guò)點(diǎn)M(2,1),直線l平行OM,且與橢圓交于A、B兩個(gè)不同的點(diǎn).
(1)求橢圓方程;
(2)若∠AOB為鈍角,求直線l在y軸上的截距m的取值范圍;
(3)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:044

橢圓中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,e=,過(guò)橢圓左焦點(diǎn)F的直線交橢圓于P,Q兩點(diǎn),|PQ|=且OP⊥OQ,求此橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案