【題目】如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點.

(1)求直線C與平面ABCD所成角的正弦的值;

(2)求證:平面A B1D1∥平面EFG;

(3)求證:平面AA1C⊥面EFG .

【答案】(1) ;(2)見解析;(3)見解析。

【解析】試題分析:(1)因為平面ABCD,所以與平面ABCD所成角,

然后解三角形求出此角即可.

2)證明面面平行根據(jù)判定定理只須證明平面平面A B1D1內兩條相交直線分別平行于平面EFG即可.在證明線面平行時又轉化為證明線線平行.

(3)易證:BD平面AA1C,再證明EF//BD,因而可證出平面AA1CEFG.

1平面ABCD=C,在正方體ABCD-A1B1C1D1

平面ABCD

∴AC在平面ABCD的射影

與平面ABCD所成角……….2

正方體的棱長為

∴AC=,=

………..4

2)在正方體ABCD-A1B1C1D1

連接BD,,=

為平行四邊形

∵EF分別為BC,CD的中點

∴EF∥BD∴EF∥…………3

∵EF平面GEF,平面GEF

平面GEF …………7

同理平面GEF∵=

平面A B1D1平面EFG ……………9

3)在正方體ABCD-A1B1C1D1平面ABCD

∵EF平面ABCD

EF …………10

∵ABCD為正方形

ACBD

∵EF∥BD

ACEF ………..11

EF平面AA1C

∵EF平面EFG

平面AA1C⊥EFG …………….12.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一錐體的三視圖如圖所示,則該棱錐的最長棱的棱長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,則{an}的前50項的和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調查高中生的數(shù)學成績與學生自主學習時間之間的相關關系,某重點高中數(shù)學教師對新入學的45名學生進行了跟蹤調查,其中每周自主做數(shù)學題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:

分數(shù)大于等于120分

分數(shù)不足120分

合計

周做題時間不少于15小時

4

19

周做題時間不足15小時

合計

45

(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關”;
(Ⅱ)( i)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii)若將頻率視為概率,從全校大于等于120分的學生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,

(1)當P在圓上運動時,求點M的軌跡C的方程;

(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是

(1)求雙曲線的方程;

(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面ABC,,EBC的中點.

求證:

求異面直線AE所成的角的大;

G中點,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的空間幾何體中,四邊形是邊長為2的正方形, 平面, , , .

(1)求證:平面平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.

查看答案和解析>>

同步練習冊答案