設(shè)函數(shù)f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時,f(x)<0;f(1)=-2.
(1)求證:f(x)是奇函數(shù);
(2)判斷f(x)在R上的單調(diào)性,并證明;
(3)求使2≤|f(x)|≤6成立的x的取值范圍.

解:(1)證明:令x=y=0,則有f(0)=2f(0),
∴f(0)=0,
令y=-x,則有f(0)=f(x)+f(-x),即f(-x)=-f(x),
∴f(x)是奇函數(shù).
(2)在定義域內(nèi)任取x1<x2,則x2-x1>0,
∵x>0時,f(x)<0,
∴f(x2-x1)<0,
又∵f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)=-f(x2-x1)>0.
∴f(x1)>f(x2),
∴y=f(x)在R上為減函數(shù).
(3)∵f(1)=-2,
∴根據(jù)題意可得:f(3)=f(1)+f(2)=3f(1)=-6,
∴根據(jù)函數(shù)的奇偶性可得:f(-1)=-f(1)=2,f(-3)=6,
∵2≤|f(x)|≤6,
∴-6≤f(x)≤-2,或2≤f(x)≤6
∴f(3)=-6≤f(x)≤-2=f(1),f(-1)=2≤f(x)≤6=f(-3)
又∵f(x)是R上的減函數(shù).
∴1≤x≤3或-3≤x≤-1,
∴x的取值范圍為[-3,-1]∪[1,3].
分析:(1)令x=y=0可得f(0)=0,再令y=-x,則有f(0)=f(x)+f(-x),進(jìn)而根據(jù)奇函數(shù)的定義得到函數(shù)的奇偶性.
(2)在定義域內(nèi)任取x1<x2,則x2-x1>0,可得f(x2-x1)<0,再根據(jù)題意可得:f(x1)-f(x2)=-f(x2-x1)>0,進(jìn)而根據(jù)減函數(shù)的定義得到答案.
(3)根據(jù)題意可得:f(3)=-6,f(-1)═2,f(-3)=6,即可得到f(3)≤f(x)≤f(1),f(-1)≤f(x)≤f(-3),進(jìn)而根據(jù)函數(shù)的單調(diào)性得到x的取值范圍.
點評:本題只要考查是抽象函數(shù)的有關(guān)性質(zhì),如奇偶性、單調(diào)性與范圍問題,以及函數(shù)性質(zhì)的應(yīng)用,解決此類問題的關(guān)鍵是靈活利用賦值法求函數(shù)值,以及靈活變形進(jìn)而證明函數(shù)單調(diào)性并且利用函數(shù)的單調(diào)性解決問題,此題屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,f(1)=-2
(1)證明f(x)為奇函數(shù).
(2)證明f(x)在R上是減函數(shù).
(3)若f(2x+5)+f(6-7x)>4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對任意實數(shù)x,y,都有f(x+y)=f(x)+f(y),若x>0時,f(x)<0,且f(1)=2,
①求f(x)在[-3,3]上的最大值和最小值.
②解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對任意x∈R,都有f(x+3)=-
1
f(x)
,且當(dāng)x∈(-3,-2)時,f(x)=5x,則f(201.2)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),當(dāng)x≠0時,xf(x)<0,f(1)=-2
(1)求證:f(x)是奇函數(shù);
(2)試問:在-n≤x≤n時(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y),且x>0時,f(x)<0,f(1)=-2.
(1)求證f(x)是奇函數(shù);
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案