【題目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直線(xiàn)l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線(xiàn)l與函數(shù)g(x)的圖象也相切.
(1)求直線(xiàn)l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x)﹣x+3,求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時(shí),求證:f(a+b)﹣f(2a)< .
【答案】
(1)解:∵f'(x)= ,∴f'(1)=1.∴直線(xiàn)l的斜率為k=1,且與函數(shù)f(x)的圖象的切點(diǎn)坐標(biāo)為(1,0).
∴直線(xiàn)l的方程為y=x﹣1.
又∵直線(xiàn)l與函數(shù)y=g(x)的圖象相切,
∴方程組 有一解.由上述方程消去y,并整理得
x2+2(m﹣1)x+9=0 ①
方程①有兩個(gè)相等的實(shí)數(shù)根,∴△=[2(m﹣1)]2﹣4×9=0
解得m=4或m=﹣2;∵m<0∴m=﹣2
(2)解:由(1)可知g(x)= ﹣2x+ ,∴g'(x)=x﹣2
h(x)=f(x)﹣x+13=lnx﹣x+3(x>0).h'(x)= ﹣1= .
∴當(dāng)x∈(0,1)時(shí),h'(x)>0,當(dāng)x∈(1,+∞)時(shí),h'(x)<0.
∴當(dāng)x=1時(shí),h(x)取最大值,其最大值為2
(3)解:證明: f(a+b)﹣f(2a)=ln(a+b)﹣ln2a=ln .
∵0<b<a,0<
由(2)知當(dāng)x∈(0,1)時(shí),h(x)<h(1)∴即x∈(0,1)時(shí),lnx﹣x+3<2,lnx<x﹣1
ln < .
∴f(a+b)﹣f(2a)<
【解析】(1)首先求出直線(xiàn)l方程為y=x﹣1,直線(xiàn)l與函數(shù)y=g(x)的圖象相切,所以有x2+2(m﹣1)x+9=0方程有兩個(gè)相等實(shí)根.(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,直接求出函數(shù)的最大值即可;(3)由(2)知當(dāng)x∈(0,1)時(shí),h(x)<h(1),即x∈(0,1)時(shí),lnx﹣x+3<2,lnx<x﹣1來(lái)證明.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位建造一間背面靠墻的小房,地面面積為12m2 , 房屋正面每平方米造價(jià)為1200元,房屋側(cè)面每平方米造價(jià)為800元,屋頂?shù)脑靸r(jià)為5800元,如果墻高為3m,且不計(jì)房屋背面和地面的費(fèi)用,設(shè)房屋正面地面的邊長(zhǎng)為xm,房屋的總造價(jià)為y元.
(1)求y用x表示的函數(shù)關(guān)系式;
(2)怎樣設(shè)計(jì)房屋能使總造價(jià)最低?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n(n+1),
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)數(shù)列{bn}的通項(xiàng)公式bn= ,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}為單調(diào)遞增數(shù)列,首項(xiàng)a1=4,且滿(mǎn)足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 則a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知遞增的等差數(shù)列{an},首項(xiàng)a1=2,Sn為其前n項(xiàng)和,且2S1 , 2S2 , 3S3成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下三個(gè)關(guān)于圓錐曲線(xiàn)的命題中:
①設(shè)A,B為兩個(gè)定點(diǎn),K為非零常數(shù),若|PA|﹣|PB|=K,則動(dòng)點(diǎn)P的軌跡是雙曲線(xiàn).
②方程2x2﹣5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率
③雙曲線(xiàn) 與橢圓 +y2=1有相同的焦點(diǎn).
④已知拋物線(xiàn)y2=2px,以過(guò)焦點(diǎn)的一條弦AB為直徑作圓,則此圓與準(zhǔn)線(xiàn)相切
其中真命題為(寫(xiě)出所以真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是線(xiàn)段EF的中點(diǎn).
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的正方形, 底面, ,且.
(Ⅰ)記線(xiàn)段的中點(diǎn)為,在平面內(nèi)過(guò)點(diǎn)作一條直線(xiàn)與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線(xiàn)與平面所成角的正弦值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com