【題目】設(shè){an}為單調(diào)遞增數(shù)列,首項(xiàng)a1=4,且滿足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 則a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
【答案】C
【解析】解:∵an+12+an2+16=8(an+1+an)+2an+1an ,
∴an+12+an2﹣8(an+1+an)+16=2an+1an ,
∴(an+1+an)2﹣8(an+1+an)+16=4an+1an ,
則(an+1+an﹣4)2=4an+1an ,
∵{an}為a1=4的單調(diào)遞增數(shù)列,
∴an+1+an﹣4=2 ,則an+1+an﹣2 =4,
即 ,則 ,
又{an}為a1=4的單調(diào)遞增數(shù)列,
則 ,又a1=4,則 ,
∴數(shù)列{ }是以2為首項(xiàng)和公差的等差數(shù)列,
∴ ,則 .
∴ =4﹣16n,
則a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=4n﹣16(1+2+…+n)=4n﹣16× =﹣4n(2n+1).
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),
①求曲線在點(diǎn)處的切線方程;
②求函數(shù)在區(qū)間上的值域.
(2)對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P、Q分別在直線3x﹣y+5=0和3x﹣y﹣13=0上運(yùn)動(dòng),線段PQ中點(diǎn)為M(x0 , y0),且x0+y0>4,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE∥平面ADP;
(2)求直線BE與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;
(II)若對(duì)于任意,都有成立,求k的取值范圍;
(Ⅲ)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 為拋物線上的兩個(gè)動(dòng)點(diǎn),其中,且
(1)求證:線段的垂直平分線恒過(guò)定點(diǎn),并求出點(diǎn)坐標(biāo);
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x)﹣x+3,求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時(shí),求證:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足, .
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com