通過隨機(jī)詢問72名不同性別的大學(xué)生在購買食物時(shí)是否讀營養(yǎng)說明,得到如下2×2列聯(lián)表:(臨界值見附表) K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

女生 男生 總計(jì)
讀營養(yǎng)說明 16 28 44
不讀營養(yǎng)說明 20 8 28
總計(jì) 36 36 72
請(qǐng)問性別和讀營養(yǎng)說明之間在多大程度上有關(guān)系?
考點(diǎn):獨(dú)立性檢驗(yàn)
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)性別與看營養(yǎng)說明列聯(lián)表,求出K2的觀測(cè)值k的值,再根據(jù)P(K2≥6.635)=0.01,判斷大學(xué)生“性別與在購買食物時(shí)看營養(yǎng)說明”有關(guān).
解答: 解:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
=
72×(16×8-20×28)2
35×36×44×28
≈8.416>6.635,
∴有99%的把握認(rèn)為性別和讀營養(yǎng)說明有關(guān).
點(diǎn)評(píng):本題主要考查讀圖表、獨(dú)立性檢驗(yàn),考查數(shù)據(jù)處理能力和應(yīng)用意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足條件
y≥2|x|-1
y≤x+1
,則z=x+3y的最大值為( 。
A、9B、11C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某品牌電視專賣店,在五一期間設(shè)計(jì)一項(xiàng)有獎(jiǎng)促銷活動(dòng):每購買一臺(tái)電視,即可通過電腦產(chǎn)生一組3個(gè)數(shù)的隨機(jī)數(shù)組,根據(jù)下表兌獎(jiǎng).
獎(jiǎng)次 一等獎(jiǎng) 二等獎(jiǎng) 三等獎(jiǎng)
隨機(jī)數(shù)組的特征 3個(gè)1或3個(gè)0 只有2個(gè)1或2個(gè)0 只有1個(gè)1或1個(gè)0
獎(jiǎng)金(單位:元) 5m 2m m
商家為了了解計(jì)劃的可行性,估計(jì)獎(jiǎng)金數(shù),進(jìn)行了隨機(jī)模擬試驗(yàn),產(chǎn)生20組隨機(jī)數(shù)組,每組3個(gè)數(shù),試驗(yàn)結(jié)果如下所示:
235,145,124,754,353,296,065,379,118,247,
520,356,218,954,245,368,035,111,357,265.
(1)在以上模擬的20組數(shù)中,隨機(jī)抽取3組數(shù),至少有1組獲獎(jiǎng)的概率;
(2)根據(jù)上述模擬試驗(yàn)的結(jié)果,將頻率視為概率.
(i)若活動(dòng)期間某單位購買四臺(tái)電視,求恰好有兩臺(tái)獲獎(jiǎng)的概率;
(ii)若本次活動(dòng)平均每臺(tái)電視的獎(jiǎng)金不超過260元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|PD|=
2
|MD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C.
(Ⅰ)求證:曲線C是焦點(diǎn)在x軸上的橢圓,并求其方程;
(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F2,直線l:y=kx+m與橢圓C交于A、B兩點(diǎn),直線F2A與F2B的傾斜角互補(bǔ),求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某校校門的一個(gè)局部的截面設(shè)計(jì)圖,CA=AO=OB=2米,
EF
是以O(shè)為圓心、OA為半徑的圓的一段。‥、F兩點(diǎn)分別在OC、OD上),∠AOC=∠BOD=θ(θ≤
π
4
),OD=k•OC(k是常數(shù)且1<k≤3).通過對(duì)材料性能進(jìn)行測(cè)算,“跨度比”
CD
OC
不能超過
3k+1
. 
(1)將該截面(圖中實(shí)線圍成的區(qū)域)的面積S表示為θ的函數(shù);
(2)為使該門口顯得相對(duì)大氣,截面積S越大越好. 當(dāng)S最大時(shí),試求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
2
+y2=1點(diǎn)B的坐標(biāo)為(0,-1),過點(diǎn)B的直線交橢圓Γ于另一點(diǎn)A,且AB中點(diǎn)E在直線y=x上,點(diǎn)P為橢圓Γ上異于A,B的任意一點(diǎn).
(1)求直線AB的方程,;
(2)設(shè)A不為橢圓頂點(diǎn),又直線AP,BP分別交直線y=x于M,N兩點(diǎn),證明:
OM
ON
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過準(zhǔn)線l上一點(diǎn)M(-1,0)且斜率為k的直線l1交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P,直線PF交拋物線C于D,E兩點(diǎn).
(Ⅰ)求拋物線C的方程及k的取值范圍;
(Ⅱ)是否存在k值,使點(diǎn)P是線段DE的中點(diǎn)?若存在,求出k值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)由下表定義:
x 1 2 3 4 5
f(x) 4 1 3 5 2
若a1=5,an+1=f(an)(n=1,2,…),則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),關(guān)于x的方程mf2(x)+nf(x)+p=0(m,n,p都是實(shí)數(shù))有四個(gè)不同的實(shí)數(shù)根,且它們從小到大的順序?yàn)椋簒1<x2<x3<x4,則x1-x2-x3+x4的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案