若直線(為參數(shù))與圓為參數(shù))相切,則(   )
A.B.C.D.
A
直線方程化為直角坐標(biāo)系下的方程為,圓的方程化為直角坐標(biāo)系
下的方程為圓心為。直線與圓相切,即
解得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線的焦點為,過點的直線交拋物線于,兩點.
①若,求直線的斜率;
②設(shè)點在線段上運(yùn)動,原點關(guān)于點的對稱點為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在以點為圓心,為直徑的半圓中,是半圓弧上一點,,曲線是滿足為定值的動點的軌跡,且曲線過點.

(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線的方程;
(Ⅱ)設(shè)過點的直線l與曲線相交于不同的兩點
若△的面積不小于,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了加快經(jīng)濟(jì)的發(fā)展,某省選擇兩城市作為龍頭帶動周邊城市的發(fā)展,決定在兩城市的周邊修建城際輕軌,假設(shè)為一個單位距離,兩城市相距個單位距離,設(shè)城際輕軌所在的曲線為,使輕軌上的點到兩城市的距離之和為個單位距離,

(1)建立如圖的直角坐標(biāo)系,求城際輕軌所在曲線的方程;
(2)若要在曲線上建一個加油站與一個收費站,使三點在一條直線上,并且個單位距離,求之間的距離有多少個單位距離?
(3)在兩城市之間有一條與所在直線成的筆直公路,直線與曲線交于兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為 離心率e= (1)求橢圓的方程。(2)若CD為過左焦點的弦,求的周長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓軸的正半軸相交于點,兩點在圓上,在第一象限,在第二象限,的橫坐標(biāo)分別為,則劣弧所對圓 心角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,一個焦點,且長軸長與短軸長的比是.若橢圓在第一象限的一點的橫坐標(biāo)為1,過點作傾斜角互補(bǔ)的兩條不同的直線,分別交橢圓于另外兩點,.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:直線的斜率為定值;
(Ⅲ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是以為焦點的拋物線,是以直線為漸近線,以為一個焦點的雙曲線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若在第一象限內(nèi)有兩個公共點,求的取值范圍,并求的最大值;
(3)若的面積滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓E的中心在坐標(biāo)原點O,焦點在x軸上,離心率為,點P(1,)和AB都在橢圓E上,且m(mR).
(1)求橢圓E的方程及直線AB的斜率;
(2)當(dāng)m=-3時,證明原點O是△PAB的重心,并求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案