【題目】過的直線與拋物線交于,兩點(diǎn),以,兩點(diǎn)為切點(diǎn)分別作拋物線的切線,,設(shè)與交于點(diǎn).
(1)求;
(2)過,的直線交拋物線于,兩點(diǎn),證明:,并求四邊形面積的最小值.
【答案】(1)(2)見解析,最小值為32.
【解析】
(1)設(shè)直線,聯(lián)立直線l與拋物線方程,由韋達(dá)定理可得根與系數(shù)的關(guān)系,利用導(dǎo)數(shù)的幾何意義表示,的斜率,進(jìn)而表示,的方程,聯(lián)立兩直線的方程表示交點(diǎn)坐標(biāo),即可求得答案;
(2)由兩點(diǎn)坐標(biāo)分別表示,由可知,由拋物線的焦點(diǎn)弦弦長公式表示和,因?yàn)?/span>,所以由表示四邊形的面積,最后由均值不等式求得最小值.
(1)設(shè),直線,
所以,得,所以,
由,所以,
即,同理,聯(lián)立得
即.
(2)因?yàn)?/span>,
所以,
, 即,
,同理,
當(dāng)且僅當(dāng)時, 四邊形面積的最小值為32.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為菱形,,為上的點(diǎn),過的平面分別交,于點(diǎn),,且平面.
(1)證明:;
(2)當(dāng)為的中點(diǎn),,與平面所成的角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,a1=1,a2=,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*,記T2n為數(shù)列{an}的前2n項(xiàng)和,數(shù)列{bn}是首項(xiàng)和公比都是2的等比數(shù)列,則使不等式·<1成立的最小整數(shù)n為( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖(1)梯形中,,過作于,,沿翻折后得圖(2),使得,又點(diǎn)滿足,連接,且.
(1)證明:平面;
(2)求平面與平面所成的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓幼兒園大班的小朋友嘗試以客體區(qū)分左手和右手,左肩和右肩,在游戲中提高細(xì)致戲察和辨別能力,同時能大膽地表達(dá)自己的想法,體驗(yàn)與同伴游戲的快樂,某位教師設(shè)計了一個名為(肩手左右)的游戲,方案如下:
游戲準(zhǔn)備:
選取甲、乙兩位小朋友面朝同一方向并排坐下進(jìn)行游戲.教師站在兩位小朋友面前出示游戲卡片.游戲卡片為兩張白色紙板,一張紙板正反兩面都打印有相同的”左“字,另一張紙板正反兩面打印有相同的“右”字.
游戲進(jìn)行:
一輪游戲(一輪游戲包含多次游戲直至決出勝者)開始后,教師站在參加游戲的甲、乙兩位小朋友面前出示游戲卡片并大聲報出出示的卡片上的“左”或者“右”字.兩位小朋友如果聽到“左”的指令,或者看到教師出示寫有“左”字的卡片就應(yīng)當(dāng)將左手放至右肩上并大聲喊出“停!”.小朋友如果聽到“右”的指令,或者看到教師出示寫有“右”字的卡片就應(yīng)當(dāng)將右手放至左肩上并大聲喊出“停!”.最先完成指令動作的小朋友喊出“停!”時,兩位小朋友都應(yīng)當(dāng)停止動作,教師根據(jù)兩位小朋友的動作完成情況進(jìn)行評分,至此游戲完成一次.
游戲評價:
為了方便描述問題,約定:對于每次游戲,若甲小朋友正確完成了指令動作且乙小朋友未完成則甲得1分,乙得﹣1分;若乙小朋友正確完成了指令動作且甲小朋友未完成則甲得﹣1分,乙得1分;若甲,乙兩位小朋友都正確完成或都未正確完成指令動作,則兩位小朋友均得0分.當(dāng)兩位小朋友中的一位比另外一位小朋友的分?jǐn)?shù)多8分時,就停止本輪游戲,并判定得分高的小朋友獲勝.現(xiàn)假設(shè)“甲小朋友能正確完成一次游戲中的指令動作的概率為α,乙小朋友能正確完成一次游戲中的指令動作的概率為β”,一次游戲中甲小朋友的得分記為X.
(1)求X的分布列;
(2)若甲小朋友、乙小朋友在一輪游戲開始時都賦予4分,pi(i=0,1,…,8)表示“甲小朋友的當(dāng)前累計得分為i時,本輪游戲甲小朋友最終獲勝”的概率,則P0=0,p8=1,pi=api﹣1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假設(shè)α=0.5,β=0.8.
①證明:{pi+1﹣pi}(i=0,1,2,…,7)為等比數(shù)列;
②求p4,并根據(jù)p4的值說明這種游戲方案是否能夠充分驗(yàn)證“甲小朋友能正確完成一次游戲中的指令動作的概率為0.5,乙小朋友能正確完成一次游戲中的指令動作的率為0.8”的假設(shè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體外接球的表面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),是函數(shù)的兩個零點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設(shè)計如圖所示,AB為地面,CD,CE為路燈燈桿,CD⊥AB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=.已知CD=4m,CE=2m.
(1)當(dāng)M,D重合時,求路燈在路面的照明寬度MN;
(2)求此路燈在路面上的照明寬度MN的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com