已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).
(1)求證:f(x)是奇函數(shù);
(2)如果x為正實(shí)數(shù),f(x)<0,并且f(1)=-
1
2
,試求f(x)在區(qū)間[-2,6]上的最值.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)可令y=-x,得到f(x)+f(-x)=f(0),再令x=y=0,可求得f(0)=0,從而可證明f(x)是奇函數(shù);
(2)確定f(x)在R上單調(diào)遞減,可得f(-2)為最大值,f(6)為最小值,即可得出結(jié)論.
解答: (1)證明:令y=-x,得:f(x)+f(-x)=f(0),
令x=y=0,則f(0)=2f(0)⇒f(0)=0,
∴f(x)+f(-x)=0,f(-x)=-f(x),
∴f(x)是奇函數(shù);…(6分)
(2)解:設(shè)x1<x2,且x1,x2∈R.
則f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0,即f(x)在R上單調(diào)遞減.
∴f(-2)為最大值,f(6)為最小值.
∵f(1)=-
1
2
,∴f(-2)=-f(2)=-2f(1)=1,
f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.…(12分)
點(diǎn)評(píng):本題考查函數(shù)奇偶性、單調(diào)性的判斷,著重考查賦值法研究抽象函數(shù)的奇偶性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足2bcosA=ccosA+acosC.
(1)求角A的大。
(2)若b+c=
2
a,△ABC的面積S=
3
12
,求a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是△ABC的三個(gè)內(nèi)角,其對(duì)邊分別為a,b,c且a-b=
2
-1,sinA=
5
5
,sinB=
10
10

(Ⅰ)求a,b的值;  
(Ⅱ)若角A為銳角,求角C和邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某調(diào)查者從調(diào)查中獲知某公司近年來科研費(fèi)用支出(xi)萬元與公司所獲得利潤(yi)萬元的統(tǒng)計(jì)資料如下表:
序號(hào) 科研費(fèi)用支出xi 利潤yi xiyi
x
2
i
1 5 31 155 25
2 11 40 440 121
3 4 30 120 16
4 5 34 170 25
5 3 25 75 9
6 2 20 40 4
合計(jì) 30 180 1000 200
(1)求利潤(yi)對(duì)科研費(fèi)用支出(xi)的線性回歸方程;
(2)當(dāng)科研費(fèi)用支出為10萬元時(shí),預(yù)測(cè)利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)i是虛數(shù)單位,將
1+i
1-i
表示為a+bi的形式(a,b∈R),求a+b;
(2)二項(xiàng)式(
1
3x
-
x
2
n展開式中第五項(xiàng)的二項(xiàng)式系數(shù)是第三項(xiàng)系數(shù)的4倍,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若f(x)圖象上存在2個(gè)關(guān)于原點(diǎn)對(duì)稱,則稱f(x)為“局部中心對(duì)稱函數(shù)”.
(Ⅰ)已知二次函數(shù)f(x)=ax2+2ax-4(a∈R,a≠0),試判斷f(x)是否為“局部中心對(duì)稱函數(shù)”?并說明理由.
(Ⅱ)若f(x)=4x-m•2x+1+m2-4為定義域R上的“局部中心對(duì)稱函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,公差d≠0,a1,a3,a13成等比數(shù)列,Sn是{an}的前n項(xiàng)和
(1)求證:S1,S3,S9成等比數(shù)列;
(2)若S3=9,an=21,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(
3
2
i-
1
2
)(-
1
2
-
3
2
i)÷(1-i)
(2)∫
 
3
-1
(3x2-2x-1)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)的和為Sn,若a1>0,S4=S8,則當(dāng)Sn取最大值時(shí),n的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案