正項數(shù)列的前項和滿足:
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.
(1)  ,(2)

試題分析:(1) 先化簡關系式:,,再利用關系,得.最后驗證,得到數(shù)列的通項. (2)因為數(shù)列通項是“等比乘等差”型, 需用錯位相減法求解前項和.運用錯位相減法求和時需注意三點:一是相減時注意項的符號,二是求和時注意項的個數(shù),三是最后結果需除以
相減得:所以.
試題解析:(1)解:由,得.
由于是正項數(shù)列,所以.
于是時,.
綜上,數(shù)列的通項
(2),
相減得:
所以,錯位相減法求和
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列{an}共有n)項,且,對每個i (1≤iiN),均有
(1)當時,寫出滿足條件的所有數(shù)列{an}(不必寫出過程);
(2)當時,求滿足條件的數(shù)列{an}的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

從數(shù)列中抽出一些項,依原來的順序組成的新數(shù)列叫數(shù)列的一個子列.
(1)寫出數(shù)列的一個是等比數(shù)列的子列;
(2)若是無窮等比數(shù)列,首項,公比,則數(shù)列是否存在一個子列
為無窮等差數(shù)列?若存在,寫出該子列的通項公式;若不存在,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和,又,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為等差數(shù)列,為其前n項和,則使得達到最大值的n等于          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.將一個等差數(shù)列依次寫成下表:
第1行:2
第2行:5811
第3行:1417202326
………………………………………………
行:………………
(其中表示第行中的第個數(shù))
那么第行的數(shù)的和是_________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是等差數(shù)列的前項和,公差,若,若,則正整數(shù)的值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等比數(shù)列的前項和為,且4,2,成等差數(shù)列。若=1,則=( )
A.7B.8C.15D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為等差數(shù)列,數(shù)列滿足(    )
A.56B.57 C.72D.73

查看答案和解析>>

同步練習冊答案