【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a=2,b= ,求△ABC的面積.

【答案】
(1)解:由已知得﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,

即有sinAsinB﹣ sinAcosB=0,

因為sinA≠0,所以sinB﹣ cosB=0,又cosB≠0,

所以tanB= ,又0<B<π,所以B=


(2)解:∵ ,∵ ,又a=2,

,∵a<b,∴ ,

∴sinC=sin(A+B)=sinAcosB+cosAsinB= ,


【解析】(1)由已知利用誘導公式,兩角和差的余弦公式,求得tanB的值,可得B的值.(2)求得sinB、cosB的值,利用正弦定理求得sinA的值,可得cosA的值,從而求得sinC=sin(A+B)的值,進而求得△ABC的面積 absinC的值.
【考點精析】利用正弦定理的定義和余弦定理的定義對題目進行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:

甲商場:顧客轉動如圖所示轉盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.

乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.

(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;

(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x)=f(y)+f(x﹣y),當x>0時,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上的單調遞減;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在區(qū)間(﹣2,2)內恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (x≠1)
(1)證明f(x)在(1,+∞)上是減函數(shù);
(2)令g(x)=lnf(x),判斷g(x)=lnf(x)的奇偶性并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設P表示一個點,a,b表示兩條直線,α,β表示兩個平面,給出下列四個命題,其中正確的命題是(
①P∈a,P∈αaα
②a∩b=P,bβaβ
③a∥b,aα,P∈b,P∈αbα
④α∩β=b,P∈α,P∈βP∈b.
A.①②
B.②③
C.①④
D.③④

查看答案和解析>>

同步練習冊答案