【題目】已知函數(shù)

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,設(shè),若有兩個相異零點,求證: .

【答案】(1) 當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.(2)見解析.

【解析】試題分析:1)由, 兩種情況討論即得解;(2,設(shè)的兩個相異零點為,設(shè),因為, ,所以 ,相減得相加得.要證,即證,即,即換元設(shè)上式轉(zhuǎn)化為.構(gòu)造函數(shù)

求導(dǎo)研究單調(diào)性即可得證.

試題解析:

(1)由

當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.

(2),設(shè)的兩個相異零點為,

設(shè),

,

, ,

.

要證,即證

,即

設(shè)上式轉(zhuǎn)化為.

設(shè),∴,∴上單調(diào)遞增,

,∴,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856336)[選修4-5:不等式選講]

已知函數(shù)f(x)=.

(Ⅰ)解不等式:f(x)<2;

(Ⅱ)若x∈R,f(x)≥t2t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點A的曲線C:y=fx)的切線方程是(  )

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2018四川綿陽南山中學(xué)高三二診熱身考試以下四個命題中:

某地市高三理科學(xué)生有15000名,在一次調(diào)研測試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式抽取100分試卷進行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取15分;

已知命題,,;

上隨機取一個數(shù),能使函數(shù)上有零點的概率為;

在某次飛行航程中遭遇惡劣氣候,用分層抽樣的20名男乘客中有5名暈機,12名女乘客中有8名暈機,在檢驗這些乘客暈機是否與性別有關(guān)時,采用獨立性檢驗,有97%以上的把握認為與性別有關(guān).

0.15

0.1

0.05

0.025

2.072

2.706

3.841

5.024

其中真命題的序號為(

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

-5

0

(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:關(guān)于x的二次方程x2(a1)xa20的一個根大于零,另一根小于零;命題q:不等式2x2x>2axx(,-1)恒成立.如果命題pq為真命題,命題pq為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且離心率為

(I)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點.若直線上存在點,使得四邊形是平行四邊形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,若是整數(shù),且,且).

(Ⅰ)若, ,寫出的值;

(Ⅱ)若在數(shù)列的前2018項中,奇數(shù)的個數(shù)為,求得最大值;

(Ⅲ)若數(shù)列中, 是奇數(shù), ,證明:對任意 不是4的倍數(shù).

查看答案和解析>>

同步練習(xí)冊答案