精英家教網 > 高中數學 > 題目詳情

【題目】我國古代數學著作《九章算術》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為(結果保留一位小數.參考數據:,

A.1.3日 B.1.5日

C.2.6日 D.2.8日

【答案】C

【解析】設蒲(水生植物名)的長度組成等比數列,其,公比為,其前n項和為

莞(植物名)的長度組成等比數列,其b1=1,公比為2,其前n項和為

,,由題意可得,化簡得=7,解得(舍去),≈2.6估計2.6日蒲、莞長度相等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】有下列四個命題:

, 互為相反數的逆命題;

②“若兩個三角形全等,則兩個三角形的面積相等的否命題;

,有實根的逆否命題;

不是等邊三角形,則的三個內角相等逆命題;

其中真命題為( )

A. ①② B. ②③ C. ①③ D. ③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的多面體中, 平面

.

(Ⅰ)在上求作,使平面,請寫出作法并說明理由;

(Ⅱ)若在平面的正投影為,求四面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=的定義域為A,集合B={x|(x﹣m﹣3)(x﹣m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實數m的值;
(3)若CRB,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M≥0,都有|f(x)|≤M 成立,則稱f(x)是D上的有界函數,其中M稱為函f(x)的一個上界.已知函數f(x)=1+a+ , g(x)=
(1)若函數g(x)為奇函數,求實數a的值;
(2)在(1)的條件下,求函數g(x),在區(qū)間[ , 3]上的所有上界構成的集合;
(3)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過20萬元時,按銷售利潤的20%進行獎勵;當銷售利潤超過20萬元時,若超出部分為A萬元,則超出部分按2log5(A+2)進行獎勵,沒超出部分仍按銷售利潤的20%進行獎勵.記獎金總額為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出該公司激勵銷售人員獎勵方案的函數表達式;
(2)如果業(yè)務員老張獲得8萬元的獎勵,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱中, ,側面底面, 的中點, .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一個“亂點鴛鴦譜”節(jié)目:每次邀請四對青年夫妻,先由每人隨機抽簽獲得順序展示才藝,再由觀眾通過投票的方式實施男女配對(觀眾不知道他們的真實配對情況).

(Ⅰ)求正確配對家庭數的期望;

(Ⅱ)設有對夫妻,記他們完全錯位的配對種類總數為.

①求, , ;

②推導, , 所滿足的關系式.

查看答案和解析>>

同步練習冊答案