【題目】設(shè)數(shù)列的前項和為,已知,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和。
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)根據(jù)題意,由2Sn=(1)an+1可得2Sn﹣1=(1)an,兩式相減可得(1)(an+1﹣3an)=0,變形可得:an+1=3an,據(jù)此分析可得數(shù)列{an}是首項為1,公比為3的等比數(shù)列,由等比數(shù)列的通項公式分析可得結(jié)論;
(Ⅱ)由(Ⅰ)的結(jié)論,an=3n﹣1,結(jié)合bn=(﹣1)n(log3an)2,分析可得數(shù)列{bn}的通項,分析可得b2n﹣1+b2n=﹣(2n﹣2)2+(2n﹣1)2=4n﹣3,由此分析可得答案.
(1)根據(jù)題意,數(shù)列{an}滿足2Sn=(1)an+1,①
則有2Sn﹣1=(1)an,②
①﹣②可得:(1)(an+1﹣3an)=0,
變形可得:an+1=3an,
又由a1=1,2a1=2S1=(1)a2,解可得a2=3,所以a2=3a1
則數(shù)列{an}是首項為1,公比為3的等比數(shù)列,則an=3n﹣1;
(2)由(1)的結(jié)論,an=3n﹣1,
則bn=(﹣1)n(log3an)2=(﹣1)n(log3(3n﹣1)]2=(﹣1)n(n﹣1)2,
則b2n﹣1+b2n=﹣(2n﹣2)2+(2n﹣1)2=4n﹣3;
數(shù)列{bn}的前2n項和T2n=1+5+9+……+(4n﹣3)2n2﹣n.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)組織部為了了解全區(qū)科級干部“黨風(fēng)廉政知識”的學(xué)習(xí)情況,按照分層抽樣的方法,從全區(qū)320名正科級干部和1280名副科級干部中抽取40名科級干部預(yù)測全區(qū)科級干部“黨風(fēng)廉政知識”的學(xué)習(xí)情況.現(xiàn)將這40名科級干部分為正科級干部組和副科級干部組,利用同一份試卷分別進行預(yù)測.經(jīng)過預(yù)測后,兩組各自將預(yù)測成績統(tǒng)計分析如下表:
分組 | 人數(shù) | 平均成績 | 標(biāo)準(zhǔn)差 |
正科級干部組 | 80 | 6 | |
副科級干部組 | 70 | 4 |
(1)求;
(2)求這40名科級干部預(yù)測成績的平均分和標(biāo)準(zhǔn)差;
(3)假設(shè)該區(qū)科級干部的“黨風(fēng)廉政知識”預(yù)測成績服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值.利用估計值估計:該區(qū)科級干部“黨風(fēng)廉政知識”預(yù)測成績小于60分的約為多少人?
附:若隨機變量服從正態(tài)分布,則;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,每次抽獎都是從裝有個紅球、個白球的甲箱和裝有個紅球、個白球的乙箱中,各隨機摸出一個球,在摸出的個球中,若都是紅球,則獲得一等獎;若只有個紅球,則獲得二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎次能獲獎的概率;
(2)若某顧客有次抽獎機會,記該顧客在次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. “若,則”的否命題為真命題
B. 函數(shù)的最小值為2
C. 命題“若,則”的逆否命題為真命題
D. 命題“”的否定是:“”。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某兒童玩具生產(chǎn)廠一車間計劃每天生產(chǎn)遙控小車模型、遙控飛機模型、遙控火車模型這三種玩具共個,生產(chǎn)一個遙控小車模型需分鐘,生產(chǎn)一個遙控飛機模型需分鐘,生產(chǎn)一個遙控火車模型需分鐘,已知總生產(chǎn)時間不超過分鐘,若生產(chǎn)一個遙控小車模型可獲利元,生產(chǎn)一個遙控飛機模型可獲利元,生產(chǎn)一個遙控火車模型可獲利元,該公司合理分配生產(chǎn)任務(wù)可使每天的利潤最大,則最大利潤是__________元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下面四個命題:
:若,則;
:若,則;
:若,則;
:若,則.
其中的真命題為( )
A. , B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率是,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率是,甲、乙兩臺機床加工的零件都是一等品的概率是.
(1)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;
(2)從甲、乙、丙三臺機床加工的零件中各取一個檢驗,求至少有一個一等品的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,函數(shù)的最大值為,最小值為,求的值;
(2)當(dāng)時,函數(shù)的最大值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com