【題目】已知橢圓的左、右頂點分別為,,上下頂點分別為,左、右焦點分別為,,離心率為e.

1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設(shè)直線與橢圓C相交于P,Q兩點,分別為線段,的中點,坐標(biāo)原點O在以MN為直徑的圓上,且,求實數(shù)k的取值范圍.

【答案】1

2

【解析】

1)依題意可得,,,再結(jié)合,即可解出,得出橢圓C的方程;

2)聯(lián)立直線和橢圓C的方程,可解得,再利用坐標(biāo)原點O在以MN為直徑的圓上,得到,且為矩形,因此,即可用表示出,然后根據(jù)離心率的范圍求出的范圍,即可根據(jù)二次函數(shù)的知識求出.

1,,由,可得,化為

聯(lián)立,解得,,,∴橢圓C的方程為.

2)設(shè),,聯(lián)立,可得

,.

由題意可知:,且為矩形,

,而,

,

,∴,

,∴,

可得,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,平面平面.

(1)求證:平面;

(2)求平面與平面夾角的余弦值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中,,分別為邊的中點,以為折痕把折起,使點到達點的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東方商店欲購進某種食品(保質(zhì)期兩天),此商店每兩天購進該食品一次(購進時,該食品為剛生產(chǎn)的).根據(jù)市場調(diào)查,該食品每份進價元,售價元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場的需求情況,現(xiàn)統(tǒng)計該產(chǎn)品在本地區(qū)天的銷售量如下表:

(視樣本頻率為概率)

(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望

(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤期望為決策依據(jù),東方商店一次性購進份,哪一種得到的利潤更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 下列結(jié)論錯誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“, ”的否定是“,

D. 若“”為假命題,則均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,上下頂點分別為,,左、右焦點分別為,離心率為e.

1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設(shè)直線與橢圓C相交于P,Q兩點,分別為線段,的中點,坐標(biāo)原點O在以MN為直徑的圓上,且,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】折紙與數(shù)學(xué)有著千絲萬縷的聯(lián)系,吸引了人們的廣泛興趣.因紙的長寬比稱為白銀分割比例,故紙有一個白銀矩形的美稱.現(xiàn)有一張如圖1所示的,

分別為的中點,將其按折痕折起(如圖2),使得四點重合,重合后的點記為,折得到一個如圖3所示的三棱錐.記的中點,在中,邊上的高.

1)求證:平面

2)若分別是棱上的動點,且.當(dāng)三棱錐的體積最大時,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案