精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左、右頂點分別為,,上下頂點分別為,,左、右焦點分別為,,離心率為e.

1)若,設四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設直線與橢圓C相交于P,Q兩點,分別為線段,的中點,坐標原點O在以MN為直徑的圓上,且,求實數k的取值范圍.

【答案】1

2

【解析】

1)依題意可得,,,再結合,即可解出,得出橢圓C的方程;

2)聯(lián)立直線和橢圓C的方程,可解得,,再利用坐標原點O在以MN為直徑的圓上,得到,且為矩形,因此,即可用表示出,然后根據離心率的范圍求出的范圍,即可根據二次函數的知識求出.

1,,由,可得,化為

聯(lián)立,解得,,∴橢圓C的方程為.

2)設,聯(lián)立,可得,

,.

由題意可知:,且為矩形,

,而,

,

,∴,

,∴,

可得,∴.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓

)過點的直線被圓截得的弦長為8,求直線的方程;

)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為的正方體中,的中點,上任意一點,,上兩動點,且的長為定值,則下面四個值中不是定值的是(

A.到平面的距離B.直線與平面所成的角

C.三棱錐的體積D.二面角的大小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設向量,,其中,則下列判斷錯誤的是( )

A.向量軸正方向的夾角為定值(與、之值無關)

B.的最大值為

C.夾角的最大值為

D.的最大值為l

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,上下頂點分別為,,左、右焦點分別為,離心率為e.

1)若,設四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設直線與橢圓C相交于P,Q兩點,分別為線段,的中點,坐標原點O在以MN為直徑的圓上,且,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)若,求實數的取值范圍;

(2)設函數的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若曲線在點處的切線方程是,求函數上的值域;

(2)當時,記函數,若函數有三個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓心在軸上,半徑為2的圓位于軸右側,且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標及對應的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,中,,若以為焦點的雙曲線的漸近線經過點,則該雙曲線的離心率為

A. B.

C. D.

查看答案和解析>>

同步練習冊答案