【題目】已知點(diǎn)P在曲線C:上,曲線C在點(diǎn)P處的切線為,過(guò)點(diǎn)P且與直線垂直的直線與曲線C的另一交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若OP⊥OQ,則點(diǎn)P的縱坐標(biāo)為_______.
【答案】1
【解析】
設(shè),,則:,,利用導(dǎo)數(shù)求得切線的斜率為,即可求得直線斜率為,表示出直線的方程:,聯(lián)立直線與拋物線方程可得,利用韋達(dá)定理可得,由OP⊥OQ可得,整理得,解方程,問(wèn)題得解。
依據(jù)題意直作出圖象,如下:
設(shè),,則:,.
因?yàn)?/span>
所以曲線C在點(diǎn)P處的切線斜率為:,
又過(guò)點(diǎn)P且與直線垂直的直線與曲線C的另一交點(diǎn)為Q,所以
且,所以
所以直線的方程為:
聯(lián)立直線與拋物線方程可得:,
整理得:.
所以
又因?yàn)镺P⊥OQ,所以,即:,整理得:.
所以,解得:
所以
所以點(diǎn)P的縱坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電子計(jì)算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計(jì)算機(jī)利用二進(jìn)制存儲(chǔ)信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過(guò)電路的斷或通實(shí)現(xiàn).“字節(jié)(Byte)”是更大的存儲(chǔ)單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個(gè)二進(jìn)制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計(jì)算結(jié)果用十進(jìn)制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為2,是的中點(diǎn).
(1)在線段上是否存在一點(diǎn),使得平面平面,若存在指出點(diǎn)在線段上的位置,若不存在,請(qǐng)說(shuō)明理由;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)求的單調(diào)遞增區(qū)間;
(2)當(dāng)的圖像剛好與軸相切時(shí),設(shè)函數(shù),其中,求證:存在極小值且該極小值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,,過(guò)點(diǎn)的直線分別與直線,交于,其中點(diǎn)在第三象限,點(diǎn)在第二象限,點(diǎn);
(1)若的面積為,求直線的方程;
(2)直線交于點(diǎn),直線交于點(diǎn),若直線的斜率均存在,分別設(shè)為,判斷是否為定值?若為定值,求出該定值;若不為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的左、右頂點(diǎn)分別為A1(﹣2,0),A2(2,0),右準(zhǔn)線方程為x=4.過(guò)點(diǎn)A1的直線交橢圓C于x軸上方的點(diǎn)P,交橢圓C的右準(zhǔn)線于點(diǎn)D.直線A2D與橢圓C的另一交點(diǎn)為G,直線OG與直線A1D交于點(diǎn)H.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若HG⊥A1D,試求直線A1D的方程;
(3)如果,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求過(guò)曲線C上任意一點(diǎn)切線斜率的取值范圍;
(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意
抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com