【題目】如圖,在平面直角坐標系xOy中,已知橢圓C:(ab>0)的左、右頂點分別為A1(﹣2,0),A2(2,0),右準線方程為x=4.過點A1的直線交橢圓C于x軸上方的點P,交橢圓C的右準線于點D.直線A2D與橢圓C的另一交點為G,直線OG與直線A1D交于點H.

(1)求橢圓C的標準方程;

(2)若HG⊥A1D,試求直線A1D的方程;

(3)如果,試求的取值范圍.

【答案】(1);(2);(3)

【解析】

1)由題可得:,利用橢圓準線方程可得,即可求得,問題得解。

2)設,即可表示直線的方程為:,聯(lián)立直線與橢圓方程可求得,即可求得,由HG⊥A1D可列方程,整理得:,結合即可求得,從而求得,問題得解。

3)設,,,表示出直線的方程為:,直線的方程為:,將直線方程分別與橢圓方程聯(lián)立,即可求得,,,聯(lián)立直線的方程與直線的方程即可求得,即可表示出,,利用列方程可得:,即可表示出,結合即可求得,問題得解。

1)由題可得:,又橢圓右準線方程為=4,

所以,解得:,又,解得:

所以橢圓C的標準方程為:.

2)設,

所以直線的方程為:

聯(lián)立直線的方程與準線方程可得:

整理得:,所以

所以.

又HG⊥A1D,所以,即:

聯(lián)立可得:.

所以.

所以直線的方程為:.

3)設,,,,其中

直線的方程為:

聯(lián)立橢圓方程可得:,解得

直線的方程為:

聯(lián)立橢圓方程可得:,解得,

所以直線的方程為:

聯(lián)立直線的方程與直線的方程可得:,

解得:

所以,

,所以

所以

整理得:

因為,所以,整理得:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了檢查甲、乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取100件產品作為樣本稱出它們的質量(單位:毫克),質量值落在的產品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產品質量/毫克

頻數(shù)

165175]

3

175,185]

2

185195]

21

195,205]

36

205215]

24

215,225]

9

225,235]

5

(Ⅰ)根據(jù)乙流水線樣本的頻率分布直方圖,求乙流水線樣本質量的中位數(shù)(結果保留整數(shù));

(Ⅱ)從甲流水線樣本中質量在的產品中任取2件產品,求兩件產品中恰有一件合格品的概率;

甲流水線

乙流水線

總計

合格品

不合格品

總計

(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,能否在犯錯誤的概率不超過0.15的前提下認為產品的包裝合格與兩條自動包裝流水線的選擇有關?

下面臨界值表僅供參考:

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中na+b+c+d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,,若,則( )

A. 72B. 71C. 66D. 65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過定點的動圓是與圓相內切.

(1)求動圓圓心的軌跡方程;

(2)設動圓圓心的軌跡為曲線是曲線上的兩點,線段的垂直平分線過點,求面積的最大值(是坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P在曲線C:上,曲線C在點P處的切線為,過點P且與直線垂直的直線與曲線C的另一交點為Q,O為坐標原點,若OP⊥OQ,則點P的縱坐標為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線C:的焦點為F,過F的直線交拋物線C于A,B兩點.

(1)求線段AF的中點M的軌跡方程;

(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點Q是圓上的動點,點,若線段QN的垂直平分線MQ于點P.

(I)求動點P的軌跡E的方程

(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于BC兩點,求證:直線AB、AC的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線ab,c,若ab共面,bc共面,則ac共面;④若直線l上有一點在平面α外,則l在平面α.其中錯誤命題的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點垂直于軸的直線與拋物線相交于兩點,拋物線兩點處的切線及直線所圍成的三角形面積為.

(1)求拋物線的方程;

(2)設是拋物線上異于原點的兩個動點,且滿足,求面積的取值范圍.

查看答案和解析>>

同步練習冊答案