【題目】已知函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】
求出原函數(shù)的定義域,要使原函數(shù)在定義域內(nèi)是單調(diào)減函數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)恒小于等于0,原函數(shù)的導(dǎo)函數(shù)的分母恒大于0,只需分析分子的二次三項式恒大于等于0即可,根據(jù)二次項系數(shù)大于0,且對稱軸在定義域范圍內(nèi),所以二次三項式對應(yīng)的拋物線開口向上,只有其對應(yīng)二次方程的判別式小于等于0時導(dǎo)函數(shù)恒小于等于0,由此解得b的取值范圍.
由x+2>0,得x>﹣2,所以函數(shù)f(x)x2+bln(x+2)的定義域為(﹣2,+∞),
再由f(x)x2+bln(x+2),得:
要使函數(shù)f(x)在其定義域內(nèi)是單調(diào)減函數(shù),則f′(x)在(﹣1,+∞)上恒小于等于0,
因為x+2>0,
令g(x)=x2+2x﹣b,則g(x)在(﹣1,+∞)上恒大于等于0,
函數(shù)g(x)開口向上,且對稱軸為x=﹣1,
所以只有當(dāng)△=22+4×b≤0,即b≤﹣1時,g(x)≥0恒成立.
所以,使函數(shù)f(x)在其定義域內(nèi)是單調(diào)減函數(shù)的b的取值范圍是(﹣∞,﹣1].
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分店時,才能使區(qū)平均每個店的年利潤最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下4個命題:
①若 ,則a﹣c>b﹣d; ②若a≠0,b≠0,則 ;③兩條直線平行的充要條件是它們的斜率相等; ④過點(x0 , y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2 .
其中錯誤命題的序號是 . (把你認(rèn)為錯誤的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點B(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)若點A是橢圓的右頂點,點在以AB為直徑的圓上,延長PB交橢圓E于點Q,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)e<x<10,記a=ln(lnx),b=lg(lgx),c=ln(lgx),d=lg(lnx),則a,b,c,d的大小關(guān)系( )
A.a<b<c<d
B.c<d<a<b
C.c<b<d<a
D.b<d<c<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比三角形中的性質(zhì):(1)兩邊之和大于第三邊;(2)中位線長等于底邊的一半;(3)三內(nèi)角平分線交于一點; 可得四面體的對應(yīng)性質(zhì):(1)任意三個面的面積之和大于第四個面的面積;(2)過四面體的交于同一頂點的三條棱的中點的平面面積等于第四個面面積的;(3)四面體的六個二面角的平分面交于一點。其中類比推理結(jié)論正確的有 ( )
A. (1) B. (1)(2) C. (1)(2)(3) D. 都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程 =1表示的曲線為C,給出以下四個判斷:
①當(dāng)1<t<4時,曲線C表示橢圓;
②當(dāng)t>4或t<1時曲線C表示雙曲線;
③若曲線C表示焦點在x軸上的橢圓,則1<t< ;
④若曲線C表示焦點在x軸上的雙曲線,則t>4,
其中判斷正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點B與點A(﹣1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于﹣ .
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條夾角60°為的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).記∠AMN=θ.
(1)將AN,AM用含θ的關(guān)系式表示出來;
(2)如何設(shè)計(即AN,AM為多長時),使得工廠產(chǎn)生的噪聲對居民的影響最。垂S與村莊的距離AP最大)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com