【題目】設(shè)函數(shù)
(1)若b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),求對(duì)任意x∈R,f(x)>0恒成立的概率.
(2)若b是從區(qū)間[0,8](3)任取得一個(gè)數(shù),c是從[0,6]任取的一個(gè)數(shù),求函數(shù)f(x)的圖象與x軸有交點(diǎn)的概率.
【答案】
(1)解:由點(diǎn)(b,c)組成的點(diǎn)共36tkh,
設(shè)A={任意x∈R,f(x)>0恒成立}即△=b2﹣c2<0,
∴b<c,A中包含基本事件15個(gè),
∴P(A)= ;
(2)解:(b,c)所在的區(qū)域Ω={(b,c)|0≤b≤8,0≤c≤6}
若使函數(shù)f(x)的圖象與x軸有交點(diǎn),
則b≥c≥0.
∴事件B={(b,c)|b>c,0≤b≤8,0≤c≤6}如圖,
∴P(B)= .
【解析】(1)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,f(x)>0要滿足判別式小于0,列舉出結(jié)果.(2)利用幾何概型的計(jì)算概率的方法解決本題,關(guān)鍵要弄準(zhǔn)所求的隨機(jī)事件發(fā)生的區(qū)域的面積和事件總體的區(qū)域面積,通過(guò)相除的方法完成本題的解答.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用幾何概型,掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),再將得到的圖象上所有點(diǎn)向右平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到的圖象關(guān)于直線x= 對(duì)稱,則θ的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若沿著三條中位線折起后能夠拼接成一個(gè)三棱錐,則稱這樣的為“和諧三角形”,設(shè)的三個(gè)內(nèi)角分別為, , ,則下列條件不能夠確定為“和諧三角形”的是
A. ; B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)M(﹣3,﹣3)的直線l被圓x2+y2+4y﹣21=0所截得的弦長(zhǎng)為 ,則直線l方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)在月平均用電量為,[220,240),[240,260),[260,280)的三用戶中,用分層抽樣的方法抽取10居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
(3)求月平均用電量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: + =1(a>b>0)過(guò)點(diǎn)A(1, ),其焦距為2.
(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質(zhì):若橢圓的方程為 + =1(a>b>0),則橢圓在其上一點(diǎn)A(x0 , y0)處的切線方程為 + =1,試運(yùn)用該性質(zhì)解決以下問(wèn)題:
(i)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過(guò)B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求△OCD面積的最小值;
(ii)如圖(2),過(guò)橢圓C2: + =1上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)x,y滿足:f(2)=2,f(xy)=xf(y)+yf(x),an= (n∈N*),bn= (n∈N*),考查下列結(jié)論:
①f(1)=1;②f(x)為奇函數(shù);③數(shù)列{an}為等差數(shù)列;④數(shù)列{bn}為等比數(shù)列.
以上命題正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某蔬菜商店買進(jìn)的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在所給網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留2位有效數(shù)字);
(3)根據(jù)(2)中的計(jì)算結(jié)果,若該蔬菜商店買進(jìn)土豆40噸,則預(yù)計(jì)可以銷售多少天(計(jì)算結(jié)果保留整數(shù))?
附: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的首項(xiàng)為8,Sn是其前n項(xiàng)的和,某同學(xué)經(jīng)計(jì)算得S2=20,S3=36,S4=65,后來(lái)該同學(xué)發(fā)現(xiàn)了其中一個(gè)數(shù)算錯(cuò)了,則該數(shù)為( )
A.S1
B.S2
C.S3
D.S4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com