已知A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(wx+j)(w>0,<j<0)圖象上的任意兩點,且角j的終邊經過點P(l,-),若|f(x1)-f(x2)|=4時,|x1-x2|的最小值為.
(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調遞增區(qū)間;(3)當x∈時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

(1)f(x)=2sin(3x-);(2)[+,+], k∈Z;(3)[,+¥).

解析試題分析:(1)由角j的終邊經過點P(l,-)及<j<0可求得j的值,又|f(x1)-f(x2)|=4時,|x1-x2|的最小值為可最小正周期為,從而可求出w的值,即可求出其表達式;(2)由復合函數(shù)的知識可令3x-=u,只需令+2kp≤u≤+2kp,解出x的范圍即是函數(shù)的單調遞增區(qū)間;(3)不等式mf(x)+2m≥f(x)恒成立要求m的范圍,只需用分離變量的作法,等價于,而x∈,可求出f(x)的范圍,從而可求出的最大值,則m恒大于或等于其最大值.
試題解析:(1)角j的終邊經過點P(1,-),tanj=-,∵<j<0,∴j=-.由|f(x1)-f(x2)|=4時,|x1-x2|的最小值為,得T=,即=,∴w=3,∴f(x)=2sin(3x-)
(2)令+2kp≤3x-+2kp,得+≤x≤+,k∈Z
∴函數(shù)f(x)的單調遞增區(qū)間為[++],k∈Z.
(3)當x∈時,-≤f(x)≤1,所以2+f(x)>0,mf(x)+2m≥f(x)等價于.由-≤f(x)≤1,得的最大值為,所以實數(shù)m的取值范圍是[,+¥).
考點:三角函數(shù)的定義,三角函數(shù)的周期公式,正弦函數(shù)的單調區(qū)間,恒成立問題,分離變量法,轉化思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當函數(shù)取得最大值時,求自變量的集合;
(2)該函數(shù)的圖象可由的圖象經過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)在一個周期內,當 時, 取得最小值 ;當 時, 取得最大值4,試求 的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)圖象的一部分如圖所示.
(1)求函數(shù)的解析式;
(2)當時,求函數(shù)的最大值與最小值及相應的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù);
(1).求的周期和單調遞增區(qū)間;
(2).若關于x的方程上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,且.
求值:(1);
(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側的觀光道曲線段是函數(shù)時的圖象且最高點B(-1,4),在y軸右側的曲線段是以CO為直徑的半圓弧.⑴試確定A,的值;⑵現(xiàn)要在右側的半圓中修建一條步行道CDO(單位:米),在點C與半圓弧上的一點D之間設計為直線段(造價為2萬元/米),從D到點O之間設計為沿半圓弧的弧形(造價為1萬元/米).設(弧度),試用來表示修建步行道的造價預算,并求造價預算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知
(1)若,求的取值構成的集合.
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是
②終邊在y軸上的角的集合是{α|α=,k∈Z};
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④把函數(shù)y=3sin(2x+)的圖象向右平移個單位得到y(tǒng)=3sin2x的圖象;
⑤函數(shù)y=sin(x-)在[0,]上是減函數(shù).
其中真命題的序號是    .

查看答案和解析>>

同步練習冊答案