【題目】某校在圓心角為直角,半徑為的扇形區(qū)域內(nèi)進(jìn)行野外生存訓(xùn)練.如圖所示,在相距的,兩個(gè)位置分別為300,100名學(xué)生,在道路上設(shè)置集合地點(diǎn),要求所有學(xué)生沿最短路徑到點(diǎn)集合,記所有學(xué)生進(jìn)行的總路程為.
(1)設(shè),寫出關(guān)于的函數(shù)表達(dá)式;
(2)當(dāng)最小時(shí),集合地點(diǎn)離點(diǎn)多遠(yuǎn)?
【答案】(1),
(2)集合地點(diǎn)離出發(fā)點(diǎn)的距離為時(shí),總路程最短,其最短總路程為.
【解析】
(1)△AOD中,由正弦定理求得AD、OD,再計(jì)算S=300AD+100BD的值;
(2)令函數(shù)y=,求導(dǎo)判斷函數(shù)單調(diào)性與最值,從而求出y的最小值以及對應(yīng)AD的值和S的最小值.
(1)因?yàn)樵?/span>中,,,所以由正弦定理可知,
解得,,且,
故 ,
(2)令,則有,令得
記,,列表得
0 | |||
↘ | 極小值 | ↗ |
可知,當(dāng)且僅當(dāng)時(shí),有極小值也是最小值為,
當(dāng)時(shí),此時(shí)總路程有最小值.
答:當(dāng)集合點(diǎn)離出發(fā)點(diǎn)的距離為時(shí),總路程最短,其最短總路程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查高一學(xué)生在分班選科時(shí)是否選擇物理科目與性別的關(guān)系,隨機(jī)調(diào)查100名高一學(xué)生,得到列聯(lián)表如下:由此得出的正確結(jié)論是( )
選擇物理 | 不選擇物理 | 總計(jì) | |
男 | 35 | 20 | 55 |
女 | 15 | 30 | 45 |
總計(jì) | 50 | 50 | 100 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A.在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“選擇物理與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“選擇物理與性別無關(guān)”
C.有的把握認(rèn)為“選擇物理與性別有關(guān)”
D.有的把握認(rèn)為“選擇物理與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△中,,△通過△以直線為軸順時(shí)針旋轉(zhuǎn)120°得到(),點(diǎn)為線段上一點(diǎn),且.
(1)求證:,并證明:平面;
(2)分別以、、為、、軸建立空間直角坐標(biāo)系,求異面直線與所成角的大小(用反余弦運(yùn)算表示);
(3)若,求銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的“局部對稱點(diǎn)”.
(1),其中,試判斷是否有“局部對稱點(diǎn)”?若有,請求出該點(diǎn);若沒有,請說明理由;
(2)若函數(shù)在區(qū)間內(nèi)有“局部對稱點(diǎn)”,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)在R上有“局部對稱點(diǎn)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輪船公司的一艘輪船每小時(shí)花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時(shí)當(dāng)船速為10海里小時(shí),它的燃料費(fèi)是每小時(shí)96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計(jì)是每小時(shí)150元假定運(yùn)行過程中輪船以速度v勻速航行.
求k的值;
求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)上,常用符號(hào)來表示算式,如記=,其中,.
(1)若,,,…,成等差數(shù)列,且,求證:;
(2)若,,記,且不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com