為了在夏季降溫和冬季供暖時(shí)減少能源消耗,可在建筑物的外墻加裝不超過10厘米厚的隔熱層.某幢建筑物要加裝可使用20年的隔熱層.每厘米厚的隔熱層的加裝成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:厘米)滿足關(guān)系:C(x)=
k3x+5
.若不加裝隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層加裝費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式,并寫f(x)=的定義域;
(2)隔熱層加裝厚度為多少厘米時(shí),總費(fèi)用f(x)=最?并求出最小總費(fèi)用.
分析:(1)由每年的能源消耗費(fèi)用為C(x),當(dāng)x=0時(shí),可得k的值;又加裝隔熱層的費(fèi)用為C1(x),所以總費(fèi)用函數(shù)f(x)可表示出來,其定義域可得;
(2)對(duì)函數(shù)f(x)變形,利用基本不等式求得最值,即得所求.
解答:解:(1)由已知,當(dāng)x=0時(shí),C(x)=8,即
k
5
=8,所以k=40,
所以C(x)=
40
3x+5

又加裝隔熱層的費(fèi)用為:C1(x)=6x,
所以f(x)=20•C(x)+C1(x)=20×
40
3x+5
+6x=6x+
800
3x+5
,
且f(x)定義域?yàn)閇0,10].
(2)f(x)=6x+
800
3x+5
=6x+
800
3(x+
5
3
)
=6(x+
5
3
)
+
800
3(x+
5
3
)
-10≥2
6×800
3
-10=70,
當(dāng)且僅當(dāng)6(x+
5
3
)
=
800
3(x+
5
3
)
,即(x+
5
3
)
2
=
800
18
,即x+
5
3
=
20
3
,即x=5時(shí)取等號(hào).
所以,當(dāng)隔熱層加裝厚度為5厘米時(shí),總費(fèi)用f(x)最小,最小總費(fèi)用為70萬(wàn)元.
點(diǎn)評(píng):本題考查了平均值不等式在函數(shù)極值中的應(yīng)用,在利用平均值不等式求最值時(shí),要注意等號(hào)成立的條件是什么.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k3x+5
(0≤x≤10)
,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求k的值及f(x)的表達(dá)式.
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k
3x+5
(0≤x≤10)
,若不建隔熱層(即x=0時(shí)),每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值;
(2)求f(x)的表達(dá)式;
(3)利用“函數(shù)y=x+
a
x
(其中a為大于0的常數(shù)),在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.今年暑假我校學(xué)生公寓建造了可使用15年的隔熱層,每厘米厚的隔熱層建造成本為4萬(wàn)元.學(xué)生公寓每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
k2x+3
(0≤x≤10
,若不建隔熱層,每年能源消耗費(fèi)用為10萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與15年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)我校做到了使總費(fèi)用f(x)達(dá)到最小,請(qǐng)你計(jì)算學(xué)生公寓隔熱層修建的厚度和總費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,一般都要在屋頂和外墻建造隔熱層.某建筑物要造可使用30年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能耗費(fèi)用W(單位:萬(wàn)元)與隔熱層厚度x(單位:厘米)滿足關(guān)系W=
m3x+4
,(0≤x≤15),若不建隔熱層,每年能耗為10萬(wàn)元.設(shè)f(x)為隔熱層的建造費(fèi)用與30年總計(jì)的能耗費(fèi)用之和.
(1)求m的值和f(x);
(2)當(dāng)x=4時(shí),以隔熱層使用壽命30年計(jì)算,平均每年比不建隔熱層節(jié)約多少錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案