【題目】由于《中國詩詞大會》節(jié)目在社會上反響良好,某地也模仿并舉辦民間詩詞大會,進入正賽的條件為:電腦隨機抽取10首古詩,參賽者能夠正確背誦6首及以上的進入正賽.若詩詞愛好者甲、乙參賽,他們背誦每一首古詩正確的概率均為

1)求甲進入正賽的概率.

2)若參賽者甲、乙都進入了正賽,現(xiàn)有兩種賽制可供甲、乙進行PK,淘汰其中一人.

賽制一:積分淘汰制,電腦隨機抽取4首古詩,每首古詩背誦正確加2分,錯誤減1分.由于難度增加,甲背誦每首古詩正確的概率為,乙背誦每首古詩正確的概率為,設甲的得分為,乙的得分為

賽制二:對詩淘汰制,甲、乙輪流互出詩名,由對方背誦且互不影響,乙出題,甲回答正確的概率為0.3,甲出題,乙回答正確的概率為0.4,誰先背誦錯誤誰先出局.

i)賽制一中,求甲、乙得分的均值,并預測誰會被淘汰;

ii)賽制二中,誰先出題甲獲勝的概率大?

【答案】1;(2)(i,0,乙可能被淘汰;(ii)甲先出題甲獲勝的概率大.

【解析】

1)利用相互獨立事件的概率公式求解;

2)(i)分別寫出的可能取值,求出對應的概率,再求期望,比較大小得出結論;(ii)分別求出甲或乙先出題時,甲乙兩人獲勝的概率,從而得出結論.

(1)甲進入正賽的概率為

,

∴甲進入正賽的概率.

(2)i)由題意,甲乙兩人的得分均有可能為8分,5分,2分,-1分,-4分.

,

,

,

.

,

,

.

.

乙可能被淘汰.

ii)甲先出題且甲獲勝的概率:

,

此為等比數(shù)列求和,.

乙先出題且乙獲勝的概率:

此為等比數(shù)列求和,

則甲獲勝的概率約為.

,甲先出題甲獲勝的概率大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.

(1)求橢圓的標準方程;

(2)過橢圓的右頂點作互相垂直的兩條直線分別交橢圓兩點(點不同于橢圓的右頂點),證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

()討論函數(shù)的單調性;

()證明: (為自然對數(shù)的底)恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱,F、E分別是的中點.

1)證明:平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線y22pxp0)上一點P1,2),作兩條直線分別交拋物線于Ax1y1),Bx2,y2),當PAPB的斜率存在且傾斜角互補時:

1)求y1+y2的值;

2)若直線ABy軸上的截距b[1,3]時,求ABP面積SABP的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)寫出曲線,的極坐標方程;

2)在極坐標系中,已知的公共點分別為,,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點,,分別是橢圓的左、右焦點,為等腰三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過左焦點作直線交橢圓于兩點,其中,另一條過的直線交橢圓于兩點(不與重合),且點不與點重合. 過軸的垂線分別交直線,,.

①求點坐標; ②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.

(Ⅰ)求實數(shù)的值;

(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創(chuàng)建知識的網(wǎng)絡問卷調查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認為,此次問卷調查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;

(2)在(1)的條件下,文明辦為此次參加問卷調查的市民制定如下獎勵方案:

(i)得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

(ii)每次獲贈的隨機話費和對應的概率為:

獲贈的隨機話費(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列及數(shù)學期望.

附:①

②若,則,.

查看答案和解析>>

同步練習冊答案