【題目】已知橢圓的兩個(gè)焦點(diǎn)為、,的等差中項(xiàng),其中、、都是正數(shù),過(guò)點(diǎn)的直線與原點(diǎn)的距離為.

1)求橢圓的方程;

2)點(diǎn)是橢圓上一動(dòng)點(diǎn),定點(diǎn),求面積的最大值;

3)已知定點(diǎn),直線與橢圓交于相異兩點(diǎn).證明:對(duì)任意的,都存在實(shí)數(shù),使得以線段為直徑的圓過(guò)點(diǎn).

【答案】1;(2;(3)證明見(jiàn)解析

【解析】

1)由的等差中項(xiàng)得到,設(shè)出直線的方程,利用點(diǎn)到直線的距離公式,列出方程,求得的值,即可得到橢圓的方程;

2)當(dāng)橢圓上的點(diǎn)到直線距離最大時(shí),面積取得最大值,設(shè)出平行直線,即可得到結(jié)論;

3)將直線的方程代入橢圓的方程,利用韋達(dá)定理及向量知識(shí),結(jié)合判別式,即可得到結(jié)論.

1)由的等差中項(xiàng),可得

過(guò)點(diǎn)的直線方程為,即,

又由該直線與原點(diǎn)的距離為,由點(diǎn)到直線的距離公式得

解得,所以橢圓方程為.

2)由(1)得,直線的方程為,且,

當(dāng)橢圓上的點(diǎn)到直線距離最大時(shí),面積取得最大值

設(shè)與直線平行的直線方程為

將其代入橢圓方程,得,

,解得,

當(dāng)時(shí),橢圓上的點(diǎn)到直線距離最大為,

此時(shí)面積為.

3)將代入橢圓方程,得,

由直線與橢圓有兩個(gè)交點(diǎn),所以,解得

設(shè)、,則,

因?yàn)橐?/span>為直徑的圓過(guò)點(diǎn),所以,即,

,

所以,解得,

如果對(duì)任意的都成立,則存在,使得以線段為直徑的圓過(guò)點(diǎn),

又因?yàn)?/span>,即,

所以對(duì)任意的,都存在使得以線段為直徑的圓過(guò)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中:①若“”是“”的充要條件;

②若“,”,則實(shí)數(shù)的取值范圍是;

③已知平面、、,直線、,若,,,則;

④函數(shù)的所有零點(diǎn)存在區(qū)間是.

其中正確的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題一“將軍飲馬”問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在區(qū)域?yàn)?/span>,若將軍從點(diǎn)處出發(fā),河岸線所在直線方程為,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則“將軍飲馬”的最短總路程為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知正方形鐵片邊長(zhǎng)為2a米,四邊中點(diǎn)分別為E,FG,H,沿著虛線剪去大正方形的四個(gè)角,剩余為四個(gè)全等的等腰三角形和一個(gè)正方形ABCD(兩個(gè)正方形中心重合且四邊相互平行),沿正方形ABCD的四邊折起,使E,F,G,H四點(diǎn)重合,記為P點(diǎn),如圖2,恰好能做成一個(gè)正四棱錐(粘貼損耗不計(jì)),PO⊥底面ABCD,O為正四棱錐底面中心,設(shè)正方形ABCD的邊長(zhǎng)為2x.

1)若正四棱錐的棱長(zhǎng)都相等,求所圍成的正四棱錐的全面積S

2)請(qǐng)寫出正四棱錐的體積V關(guān)于x的函數(shù),并求V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,,.

1)證明:;

2)若,在線段上是否存在一點(diǎn),使二面角的余弦值為?若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019101日是新中國(guó)的第70個(gè)國(guó)慶日,莊重的閱兵、歡樂(lè)的游行、熱烈的聯(lián)歡盡顯祖國(guó)的繁榮昌盛.為了了解當(dāng)天某校900名高三學(xué)生的觀看情況,從中抽取了100名學(xué)生,情況如下表所示:

觀看情況

電視觀看

網(wǎng)絡(luò)觀看

沒(méi)有觀看

人數(shù)

35

60

5

新時(shí)代下,網(wǎng)絡(luò)觀看使用最多的是手機(jī),其它還有電腦、ipad.“是否使用手機(jī)觀看”與“學(xué)生的性別”之間對(duì)應(yīng)的列聯(lián)表如下:

使用手機(jī)觀看

其它方式觀看

合計(jì)

男學(xué)生

20

8

28

女學(xué)生

20

12

32

合計(jì)

40

20

60

1)估計(jì)該校高三學(xué)生當(dāng)天的觀看人數(shù).

2)當(dāng)天沒(méi)有觀看的5名學(xué)生中,有3人第二天觀看了重播.從這5名學(xué)生中任選2人求這2人第二天都看了重播的概率;

3)根據(jù)列聯(lián)表判斷,能否有95%的把握認(rèn)為網(wǎng)絡(luò)觀看的學(xué)生中“是否使用手機(jī)觀看”與“學(xué)生的性別”有關(guān)?

附:,其中.

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列首項(xiàng)和公差都是,記的前n項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),公比為q,記的前n項(xiàng)和為

1)寫出構(gòu)成的集合A;

2)若將中的整數(shù)項(xiàng)按從小到大的順序構(gòu)成數(shù)列,求的一個(gè)通項(xiàng)公式;

3)若q為正整數(shù),問(wèn)是否存在大于1的正整數(shù)k,使得同時(shí)為(1)中集合A的元素?若存在,寫出所有符合條件的的通項(xiàng)公式,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案