(本題滿分14分)已知四邊形滿足,,的中點(diǎn),將沿著翻折成,使面,的中點(diǎn).

(Ⅰ)求四棱錐的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.

(Ⅰ)(Ⅱ)見解析(Ⅲ)

解析試題分析:(Ⅰ)取的中點(diǎn)連接
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/48/a/1m0od4.png" style="vertical-align:middle;" />,所以為等邊三角形,
所以,
又因?yàn)槊?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/d/xuqry.png" style="vertical-align:middle;" />面,所以,                       ……2分
所以四棱錐的體積              ……5分

(Ⅱ)連接,連接
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/3/jlsh52.png" style="vertical-align:middle;" />為菱形,所以,
的中點(diǎn),所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/a/1mocm2.png" style="vertical-align:middle;" />,,
所以∥面.                                                  ……9分
(Ⅲ)連接,分別以軸建立空間直角坐標(biāo)系.

,
                                 ……10分
設(shè)面的法向量,則,
,則.
設(shè)面的法向量為,則,
,則.                                        ……12分
所以二面角的余弦值為       ……14分
考點(diǎn):本小題主要考查線面平行、線面垂直、面面垂直的判定和證明,考查椎體體積公式的應(yīng)用和二面角的求法,考查學(xué)生的空間想象能力和邏輯思維能力和運(yùn)算求解能力.
點(diǎn)評(píng):解答立體幾何的證明題,要把定理需要的條件意義列出來(lái),缺一不可;求二面角最常用的方法就是分別求出二面角的兩個(gè)面所在平面的法向量,然后通過(guò)兩個(gè)平面的法向量的夾角得到二面角的大小,但要注意結(jié)合實(shí)際圖形判斷所求角是銳角還是鈍角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖的側(cè)視圖,俯視圖,在直觀圖中,MBD的中點(diǎn),NBC的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知直三棱柱中,,點(diǎn)M是的中點(diǎn),Q是AB的中點(diǎn),
(1)若P是上的一動(dòng)點(diǎn),求證:
(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
在三棱錐中,都是邊長(zhǎng)為的等邊三角形,分別是的中點(diǎn).
(1)求證:平面
(2)求證:平面⊥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是矩形,⊥平面,,.

(1)求證:⊥平面
(2)求二面角余弦值的大;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四邊形滿足,,的中點(diǎn),將沿著翻折成,使面的中點(diǎn).

(Ⅰ)求四棱的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分).如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC的中點(diǎn),且DE∥BC.
(1)求證:DE∥平面ACD
(2)求證:BC⊥平面PAC;
(3)求AD與平面PAC所成的角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)(如圖)在底半徑為,母線長(zhǎng)為的圓錐中內(nèi)接一個(gè)高為的圓柱,求圓柱的表面積

(2)如圖,在四邊形中,,,,,求四邊形旋轉(zhuǎn)一周所成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓錐的軸截面ABC是邊長(zhǎng)為2的正三角形,O是底面圓心.
(Ⅰ)求圓錐的表面積;
(Ⅱ)經(jīng)過(guò)圓錐的高AO的中點(diǎn)O¢作平行于圓錐底面的截面,
求截得的圓臺(tái)的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案