【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4滿足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則x1x2x3x4的取值范圍是

【答案】(27,
【解析】解:解:畫出函數(shù)f(x)= 的圖象,
令f(xl)=f(x2)=f(x3)=f(x4)=a,
作出直線y=a,
由x=3時,f(3)=﹣cosπ=1;x=9時,f(9)=﹣cos3π=1.
由圖象可得,當0<a<1時,直線和曲線y=f(x)有四個交點.
由圖象可得0<x1<1<x2<3<x3<4.5,7.5<x4<9,
則|log3x1|=|log3x2|,即為﹣log3x1=log3x2 , 可得x1x2=1,
由y=﹣cos( x)的圖象關于直線x=6對稱,可得x3+x4=12,
則x1x2x3x4=x3(12﹣x3)=﹣(x3﹣6)2+36在(3,4.5)遞增,
即有x1x2x3x4∈(27, ).
所以答案是:(27, ).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=1,BC=,點M在棱CC1上,且MD1MA,則當△MAD1的面積最小時,棱CC1的長為( 。

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面,分別為的中點,且

(1)證明

(2)證明:直線與平面相交;

3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A. 命題“的否定是:“

B. 命題“若,則”的否命題為“若,則

C. 若命題為真,為假,為假命題

D. “任意實數(shù)大于不是命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在R上的函數(shù)的導函數(shù),且,則 的大小關系為( )

A. a<b<c B. b<a<c C. c<a<b D. c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+a2x , 其中常數(shù)a≠0.
(1)當a=1時,f(x)的最小值;
(2)當a=256時,是否存在實數(shù)k∈(1,2],使得不等式f(k﹣cosx)≥f(k2﹣cos2x)對任意x∈R恒成立?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有4個不同的小球,全部放入4個不同的盒子內,恰好有兩個盒子不放球的不同放法的總數(shù)為____________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩名運動員的若干次訓練成績中隨機抽取6次,分別為

甲:7.7,7.8,8.1,8.6,9.3,9.5

乙:7.6,8.0,8.2,8.5,9.2,9.5

(1)根據(jù)以上的莖葉圖,不用計算說一下甲乙誰的方差大,并說明誰的成績穩(wěn)定;

(2)從甲、乙運動員高于8.1分成績中各隨機抽取1次成績,求甲、乙運動員的成績至少有一個高于9.2分的概率.

(3)經(jīng)過對甲、乙運動員若干次成績進行統(tǒng)計,發(fā)現(xiàn)甲運動員成績均勻分布在[7.5,9.5]之間,乙運動員成績均勻分布在[7.0,10]之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于0.5分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知三個點列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n﹣1,0),滿足向量 與向量 共線,且bn+1﹣bn=6,a1=b1=0,則an=(用n表示)

查看答案和解析>>

同步練習冊答案