【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=1,BC=,點M在棱CC1上,且MD1⊥MA,則當△MAD1的面積最小時,棱CC1的長為( 。
A. B. C. 2 D.
【答案】A
【解析】
如圖所示,建立空間直角坐標系,,設 , ,
,即,
,當且僅當時取等號,所以 ,故選A.
【方法點晴】本題主要考查空間向量垂直的坐標表示以及立體幾何中的最值問題,屬于難題.解決立體幾何中的最值問題一般有兩種方法:一是幾何意義,特別是轉化為點到直線距離、到平面的距離以及平面幾何的有關結論來解決,非常巧妙;二是將立體幾何中最值問題轉化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是用的這種思路,利用均值不等式法求三角形面積最值的.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中.
(Ⅰ)當時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若對任意的,(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某個部件由三個元件按下圖方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作,設三個電子元件的使用壽命(單位:小時)均服從正態(tài)分布N(1000,502),且各個元件能否正常相互獨立,那么該部件的使用壽命超過1000小時的概率為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測量海島上一座山峰的高度,立兩根高三丈的標桿和,前后兩竿相距步,使后標桿桿腳與前標桿桿腳與山峰腳在同一直線上,從前標桿桿腳退行步到,人眼著地觀測到島峰,、、、三點共線,從后標桿桿腳退行步到,人眼著地觀測到島峰,、、三點也共線,則山峰的高度__________步.(古制步尺,里丈尺步)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解開展校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | [20,40) | [40,60) | [60,80) | [80,100] |
頻數(shù) | 6 | a | 24 | b |
(1)求a,b,c的值;
(2)先用分層抽樣的方法從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談,再從這10人中任選4人,記所選4人的量化總分為ξ,求ξ的分布列及數(shù)學期望E(ξ);
(3)某評估機構以指標(,其中表示的方差)來評估該校開展安全教育活動的成效.若≥0.7,則認定教育活動是有效的;否則認定教育活動無效,應調(diào)整安全教育方案.在(2)的條件下,判斷該校是否應調(diào)整安全教育方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4滿足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則x1x2x3x4的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com