【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為( ,0),求θ的最小值.
【答案】
(1)解:根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=﹣ .?dāng)?shù)據(jù)補(bǔ)全如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | 0 | ﹣5 | 0 |
且函數(shù)表達(dá)式為f(x)=5sin(2x﹣ )
(2)解:由(Ⅰ)知f(x)=5sin(2x﹣ ),得g(x)=5sin(2x+2θ﹣ ).
因為y=sinx的對稱中心為(kπ,0),k∈Z.
令2x+2θ﹣ =kπ,解得x= ,k∈Z.
由于函數(shù)y=g(x)的圖象關(guān)于點( ,0)成中心對稱,令 = ,
解得θ= ,k∈Z.由θ>0可知,當(dāng)K=1時,θ取得最小值
【解析】(1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=﹣ .從而可補(bǔ)全數(shù)據(jù),解得函數(shù)表達(dá)式為f(x)=5sin(2x﹣ ).(2)由(Ⅰ)及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律得g(x)=5sin(2x+2θ﹣ ).令2x+2θ﹣ =kπ,解得x= ,k∈Z.令 = ,解得θ= ,k∈Z.由θ>0可得解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零點,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
(1)若z1是純虛數(shù),求實數(shù)x的取值范圍;
(2)若z1>z2 , 求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(x+a)﹣lnx,其中a為常數(shù).
(1)當(dāng)a=﹣1時,求f(x)的極值;
(2)若f(x)是區(qū)間 內(nèi)的單調(diào)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,設(shè)函數(shù),函數(shù),
①若恒成立,求實數(shù)的取值范圍;
②證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查喜愛運(yùn)動是否和性別有關(guān),我們隨機(jī)抽取了50名對象進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛運(yùn)動 | 不喜愛運(yùn)動 | 合計 | |
男性 | 5 | ||
女性 | 10 | ||
合計 | 50 |
若在全部50人中隨機(jī)抽取2人,抽到喜愛運(yùn)動和不喜愛運(yùn)動的男性各一人的概率為 .
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=
(1)請將上面的2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜愛運(yùn)動與性別有關(guān)?說明你的理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:1是函數(shù)的極值點;
(Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;
(3)關(guān)于的方程在上恰有兩個相異實根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com