【題目】已知平面向量=(1,x),=(2x+3,-x),x∈R.
(1)若⊥,求x的值;
(2)若∥,求|-|的值.
【答案】(1)或.(2)或
【解析】
(1)由⊥得其數(shù)量積等于0,從而列出關(guān)于x的方程,解方程可得x的值;
(2)由∥,得1×(-x)-x(2x+3)=0,解出x的值,可求出的坐標(biāo),從而可求出其模.
(1)若⊥,則·=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0
整理得x2-2x-3=0,解得x=-1或x=3.
(2)若∥,則有1×(-x)-x(2x+3)=0,
即x(2x+4)=0,解得x=0或x=-2.
當(dāng)x=0時(shí),=(1,0),=(3,0),-=(-2,0),
∴|-|==2;
當(dāng)x=-2時(shí),=(1,-2),=(-1,2),-=(2,-4),
∴|-|==2
綜上,可知|-|=2或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線E:(p>0)的焦點(diǎn),C(,1)為E上一點(diǎn),且|CF|=2.過F任作兩條互相垂直的直線,,分別交拋物線E于P,Q和M,N兩點(diǎn),A,B分別為線段PQ和MN的中點(diǎn).
(1)求拋物線E的方程及點(diǎn)C的坐標(biāo);
(2)試問是否為定值?若是,求出此定值;若不是,請說明理由;
(3)證明直線AB經(jīng)過一個(gè)定點(diǎn),求此定點(diǎn)的坐標(biāo),并求△AOB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第18屆國際籃聯(lián)籃球世界杯將于2019年8月31日至9月15日在中國北京、廣州等八座城市舉行.屆時(shí),甲、乙、丙、丁四名籃球世界杯志愿者將隨機(jī)分到、、三個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(2)設(shè)隨機(jī)變量為這四名志愿者中參加崗位服務(wù)的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1) 求出,,并猜測的表達(dá)式;
(2) 求證:+++…+.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用總長為定值l的籬笆圍成長方形的場地,以墻為一邊,并用平行于一邊的籬笆隔開.
(1)設(shè)場地面積為y,垂直于墻的邊長為x,試用解析式將y表示成x的函數(shù),并確定這個(gè)函數(shù)的定義域;
(2)怎樣圍才能使得場地的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實(shí)施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進(jìn)。遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué) 的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為 自己將來高考“語數(shù)外+3 ”新高考方案中的“3”。某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進(jìn)行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個(gè)學(xué)生只能從表格中的20種課程 組合選擇一種學(xué)習(xí)。模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
組合學(xué)科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序號(hào) | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
組合學(xué)科 | 物政歷 | 物政地 | 物歷地 | 化生政 | 化生歷 | 化生地 | 化政歷 |
人數(shù) | 5人 | 0人 | 5人 | ... | 40人 | ... | ... |
序號(hào) | 15 | 16 | 17 | 18 | 19 | 20 | |
組合學(xué)科 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | 總計(jì) |
人數(shù) | ... | ... | ... | ... | ... | ... | 200人 |
為了解學(xué)生成績與學(xué)生模擬選課情之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析.
(1)樣本中選擇組合12號(hào)“化生歷”的有多少人?樣本中選擇學(xué)習(xí)物理的有多少人?
(2)從樣本選擇學(xué)習(xí)地理且學(xué)習(xí)物理的學(xué)生中隨機(jī)抽取3人,求這3人中至少有1人還要學(xué)習(xí)生物的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知,直線與曲線交于, 兩點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與正切函數(shù)相鄰兩支曲線的交點(diǎn)的橫坐標(biāo)分別為, ,且有,假設(shè)函數(shù)的兩個(gè)不同的零點(diǎn)分別為, ,若在區(qū)間內(nèi)存在兩個(gè)不同的實(shí)數(shù), ,與, 調(diào)整順序后,構(gòu)成等差數(shù)列,則的值為( )
A. B. C. 或或不存在 D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育主管部門到一所中學(xué)檢查高三年級(jí)學(xué)生的體質(zhì)健康情況,從中抽取了名學(xué)生的體質(zhì)測試成績,得到的頻率分布直方圖如圖1所示,樣本中前三組學(xué)生的原始成績按性別分類所得的莖葉圖如圖2所示.
(Ⅰ)求, , 的值;
(Ⅱ)估計(jì)該校高三學(xué)生體質(zhì)測試成績的平均數(shù)和中位數(shù);
(Ⅲ)若從成績在的學(xué)生中隨機(jī)抽取兩人重新進(jìn)行測試,求至少有一名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com