如圖,圓與直線相切于點(diǎn),與正半軸交于點(diǎn),與直線在第一象限的交點(diǎn)為.點(diǎn)為圓上任一點(diǎn),且滿足,動(dòng)點(diǎn)的軌跡記為曲線

(1)求圓的方程及曲線的方程;
(2)若兩條直線分別交曲線于點(diǎn)、,求四邊形面積的最大值,并求此時(shí)的的值.
(3)證明:曲線為橢圓,并求橢圓的焦點(diǎn)坐標(biāo).
(1)圓的方程為,曲線的方程為);(2)當(dāng)時(shí),四邊形的面積最大值為;(3)證明見解析,其焦點(diǎn)坐標(biāo)為,.

試題分析:(1)圓的半徑等于圓心到切線的距離,曲線的方程可通過(guò)已知變形得到,條件是,,把已知式平方可得出的方程;(2)從方程可看出,即,因此,我們把方程與曲線方程聯(lián)立方程組可解得兩點(diǎn)坐標(biāo),從而得到,把中的,用代可得出,從而求出,變形為,易知,故當(dāng)時(shí),取得最大值,為了求最大值,也可作變形,應(yīng)用基本不等式基本不等式知識(shí)得出結(jié)論;(3)要證曲線為橢圓,首先找它的對(duì)稱軸,從方程中可看出直線是其對(duì)稱軸,接著求出曲線與對(duì)稱軸的交點(diǎn)即橢圓的頂點(diǎn),這樣可求得長(zhǎng)軸長(zhǎng)和短軸長(zhǎng),根據(jù)公式,求出半焦距,這樣可求出焦點(diǎn),下面我們只要按照橢圓的定義證明曲線的點(diǎn)到兩定點(diǎn)的距離之和為定值,也可求出到兩定點(diǎn)的距離之和為定值的點(diǎn)的軌跡方程是曲線的方程,這樣就完成了證明. 
試題解析:(1)由題意圓的半徑,
故圓的方程為.                             2分
得,,
,得
)為曲線的方程.(未寫范圍不扣分) 4分
(2)由,,
所以,同理.        6分
由題意知 ,所以四邊形的面積.

,∴ .           8分
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí).
∴ 當(dāng)時(shí),四邊形的面積最大值為.                        10分
(3)曲線的方程為),它關(guān)于直線、和原點(diǎn)對(duì)稱,下面證明:
設(shè)曲線上任一點(diǎn)的坐標(biāo)為,則,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,顯然,所以點(diǎn)在曲線上,故曲線關(guān)于直線對(duì)稱,
同理曲線關(guān)于直線和原點(diǎn)對(duì)稱.
可以求得和直線的交點(diǎn)坐標(biāo)為
和直線的交點(diǎn)坐標(biāo)為,
,,,.
上取點(diǎn)
下面證明曲線為橢圓:
。┰O(shè)為曲線上任一點(diǎn),則





(因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042914899611.png" style="vertical-align:middle;" />)
.
即曲線上任一點(diǎn)到兩定點(diǎn)的距離之和為定值.
ⅱ)若點(diǎn)到兩定點(diǎn)的距離之和為定值,可以求得點(diǎn)的軌跡方程為(過(guò)程略).            
故曲線是橢圓,其焦點(diǎn)坐標(biāo)為.              18分
第(3)問(wèn)說(shuō)明:
1. 。ⅱⅲ﹥煞N情形只需證明一種即可,得5分,
2. 直接寫出焦點(diǎn)的坐標(biāo)給3分,未寫出理由不扣分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長(zhǎng)為.

(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,
線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)關(guān)于直線對(duì)稱,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖;.已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn). 試問(wèn);是否存在使最大的點(diǎn)P,若存在求出P點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)作傾斜角為的直線交橢圓,兩點(diǎn), 到直線的距離為,連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過(guò)、兩點(diǎn)的直線軸于點(diǎn),若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過(guò)點(diǎn)F2且與坐標(biāo)軸不垂直的直線交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得··?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖為橢圓C:的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率的面積為.若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢圓”,直線與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問(wèn)是否存在過(guò)左焦點(diǎn)的直線,使得以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線的焦點(diǎn)是雙曲線的一個(gè)焦點(diǎn),則正數(shù)等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線x=(a為長(zhǎng)半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案