直線l的傾斜角α滿足3sinα=4cosα,且它在x軸上的截距為2,則直線l的方程是
 
考點(diǎn):直線的截距式方程,直線的傾斜角
專題:直線與圓
分析:根據(jù)條件先求出直線的斜率,然后利用點(diǎn)斜式方程即可求直線方程.
解答: 解:∵直線l的傾斜角α滿足3sinα=4cosα,
∴tanα=
4
3
,即直線的斜率k=tanα=
4
3
,
∵在x軸上的截距為2,
∴直線過點(diǎn)(2,0),
則直線的方程為y-0=
4
3
(x-2)

即4x-3y-8=0,
故答案為:4x-3y-8=0.
點(diǎn)評:本題主要考查直線方程的求法,根據(jù)條件求出直線斜率和定點(diǎn)坐標(biāo)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)△ABC的內(nèi)角分別是A,B,C,若f(A)=1,cosB=
4
5
,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足
y≤x
x+y≤2
y≥0
,那么z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x2+y2≤4
x-y+2≥0
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角φ的終邊經(jīng)過點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰兩條對稱軸之間的距離等于
π
3
,則f(
π
12
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的序號為
 

①函數(shù)y=ln(3-x)的定義域為(-∞,3];
②定義在[a,b]上的偶函數(shù)f(x)=x2+(a+5)x+b最小值為5;
③若命題p:對?x∈R,都有x2-x+2≥0,則命題¬p:?x∈R,有x2-x+2<0;
④命題“函數(shù)f(x)在x=x0處有極值,則f′(x)=0”的逆命題是真命題.
⑤函數(shù)f(x)=lgx-
1
x
的零點(diǎn)所在的區(qū)間是(
1
10
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln
1
|x|+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y=
1
x
的定義域是{x|x>2},則它的值域是{y|y≤
1
2
}
;
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域是{x|-2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|x≤8};
你認(rèn)為其中不正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列語句:
①二次函數(shù)是偶函數(shù)嗎?
②2>2;
sin
π
2
=1
;
④x2-4x+4=0.
其中是命題的有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案