【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 中點(diǎn), .

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析:(Ⅰ)由正三角形性質(zhì)可得,再利用面面垂直的性質(zhì)定理得平面,從而,則 ,由線面垂直的判定定理以及面面垂直的判定定理可得平面;(Ⅱ)建立空間直角坐標(biāo)系,令,求出平面的法向量以及平面的法向量,根據(jù)二面角的平面角大余弦值列方程求出,利用棱錐的體積公式可得結(jié)果.

試題解析:(Ⅰ)取中點(diǎn)為, 中點(diǎn)為,

由側(cè)面為正三角形,且平面平面平面,故,

,則平面,所以

,則,又中點(diǎn),則,

由線面垂直的判定定理知平面,

平面,故平面平面.

(Ⅱ)

如圖所示,建立空間直角坐標(biāo)系,

,則.

由(Ⅰ)知為平面的法向量,

為平面的法向量,

由于均與垂直,

解得

,由 ,解得.

故四棱錐的體積.

【方法點(diǎn)晴】本題主要考查面面垂直的判定定理、利用空間向量求二面角以及棱錐的體積公式,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù) 的圖象,只要將函數(shù)y=sin2x的圖象(
A.向右平移 個(gè)單位長度
B.向左平移 個(gè)單位長度
C.向右平移 個(gè)單位長度
D.向左平移 個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)、、在圓周上,在邊上,且,設(shè)

(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

(2)怎樣設(shè)計(jì)才能符合園林局的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,其中為常數(shù);

(1)若,且是奇函數(shù),求的值;

(2)若 ,函數(shù)的最小值是,求的最大值;

(3)若,在上存在個(gè)點(diǎn) ,滿足 ,

,使得,

求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F1 , F2為橢圓 的左右焦點(diǎn),若橢圓上存在點(diǎn)P使得 ,則此橢圓的離心率的取值范圍是(
A.(0,
B.(0, ]
C.( , ]
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的極小值為0.

(1)求實(shí)數(shù)的值;

(2)若不等式對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)在5次考試中的數(shù)學(xué)成績用莖葉圖表示如圖,中間一列的數(shù)字表示數(shù)學(xué)成績的十位數(shù)字,兩邊的數(shù)字表示數(shù)學(xué)成績的個(gè)位數(shù)字,若甲、乙兩人的平均成績分別是 , ,則下列說法正確的是(
A. ,甲比乙成績穩(wěn)定
B. ,乙比甲成績穩(wěn)定
C. ,甲比乙成績穩(wěn)定
D. ,乙比甲成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案