【題目】已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個?證明你的結(jié)論.

【答案】
(1)解:OA的中點(diǎn)坐標(biāo)為(2,0).則直線MN的方程為x=2,

設(shè)圓心C (2,b),

又∵直徑|MN|=2 ,∴|CO|= ,∴(2﹣0)2+b2=5.

解得b=1或﹣1

∴圓心C (2,1)或C(2,﹣1).

∴圓C的方程為(x﹣2)2+(y﹣1)2=5或(x﹣2)2+(y+1)2=5


(2)解:|OA|=4, ,∴h=1,

∴點(diǎn)P到直線OA的距離為1

又因?yàn)閳A心C到直線OA的距離為1

圓心的半徑為 ,而

所以,圓C上共有四個點(diǎn)P使△POA的面積為2


【解析】(1)求出圓心與半徑,即可求圓C的方程;(2)求出圓心C到直線OA的距離為1,點(diǎn)P到直線OA的距離為1,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 中點(diǎn), .

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),f(1)=﹣
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{}的前n項(xiàng)和為Sn,公差d0,且, ,公比為q0q1)的等比數(shù)列{}中,

1)求數(shù)列{},{}的通項(xiàng)公式,

2)若數(shù)列{}滿足,求數(shù)列{}的前n項(xiàng)和Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=

l)求函數(shù)fx)的定義域;

2)求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的半徑為1,圓心C(a,2a﹣4),(其中a>0),點(diǎn)O(0,0),A(0,3)
(1)若圓C關(guān)于直線x﹣y﹣3=0對稱,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)P,使|PA|=|2PO|,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;

(Ⅱ)設(shè)函數(shù).當(dāng)時,若區(qū)間上存在,使得,求實(shí)數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由小到大排列的一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5 , 其中每個數(shù)據(jù)都小于﹣1,則樣本1,x1 , ﹣x2 , x3 , ﹣x4 , x5的中位數(shù)為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當(dāng) 時,求函數(shù)f(x)的取值范圍;
(2)將f(x)的圖象向左平移 個單位得到函數(shù)g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案