(本小題滿分12分)
甲、乙兩運動員進行射擊訓練,已知他們擊中的環(huán)數(shù)都穩(wěn)定在8,9,10環(huán),且每次射擊擊中與否互不影響.甲、乙射擊命中環(huán)數(shù)的概率如表:

 
8環(huán)
9環(huán)
10環(huán)

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙兩運動員各射擊1次,求甲運動員擊中8環(huán)且乙運動員擊中9環(huán)的概率;
(Ⅱ)若甲、乙兩運動員各自射擊2次,求這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))的概率.

(1) 0.08.
(2) 甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為

解析試題分析:解:(Ⅰ)由已知甲射擊擊中8環(huán)的概率為0.2,乙射擊擊中9環(huán)的概率為0.4,則所求事件的概率為 P=0.2×0.4=0.08.                  3分
(Ⅱ)記“甲運動員射擊一次,擊中9環(huán)以上(含9環(huán))”為事件A,“乙運動員射擊1次,擊中9環(huán)以上(含9環(huán))”為事件B,則
P(A)=0.35+0.45=0.8,P(B)=0.35+0.4=0.75.                     5分
“甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))”包含甲擊中2次、乙擊中1次,與甲擊中1次、乙擊中2次兩個事件,這兩個事件為互斥事件.
甲擊中2次、乙擊中1次的概率為
;             8分
甲擊中1次、乙擊中2次的概率為
.              11分
故所求概率為 .                            12分
答:甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為
考點:概率的求解和運用
點評:解決的關(guān)鍵是對于概率的加法公式和乘法公式的準確運用,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某廣場上有4盞裝飾燈,晚上每盞燈都隨機地閃爍紅燈或綠燈,每盞燈出現(xiàn)紅燈的概率都是,出現(xiàn)綠燈的概率都是.記這4盞燈中出現(xiàn)紅燈的數(shù)量為,當這排裝飾燈閃爍一次時:
(1)求時的概率;(2)求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形的邊長為2.

(1)在其四邊或內(nèi)部取點,且,求事件:“”的概率;
(2)在其內(nèi)部取點,且,求事件“的面積均大于”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某班從6名班干部中(男生4人,女生2人)選3人參加學校義務(wù)勞動;(1)求男生甲或女生乙被選中的概率;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率;
(3)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場有獎銷售中,購滿100元商品得1張獎券,多購多得。每1000張獎券為一個開獎單位,其中含特等獎1個,一等獎10個,二等獎50個。設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A、B、C,求:
(1)P(A),P(B),P(C);
(2)1張獎券的中獎概率;
(3)1張獎券不中特等獎且不中一等獎的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
根據(jù)公安部最新修訂的《機動車駕駛證申領(lǐng)和使用規(guī)定》:每位駕駛證申領(lǐng)者必須通過《科目一》(理論科目)、《綜合科》(駕駛技能加科目一的部分理論)的考試.已知李先生已通過《科目一》的考試,且《科目一》的成績不受《綜合科》的影響,《綜合科》三年內(nèi)有5次預約考試的機會,一旦某次考試通過,便可領(lǐng)取駕駛證,不再參加以后的考試,否則就一直考到第5次為止.設(shè)李先生《綜合科》每次參加考試通過的概率依次為0.5,0.6,0.7,0.8,0.9.
(1)求在三年內(nèi)李先生參加駕駛證考試次數(shù)的分布列和數(shù)學期望;
(2)求李先生在三年內(nèi)領(lǐng)到駕駛證的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某品牌的汽車4S店,對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:已知分3期付款的頻率為0.2,4S店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元;分4期或5期付款,其利潤為2萬元,用表示經(jīng)銷一輛汽車的利潤。

付款方工
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

(1)求上表中的值;(2)若以頻率作為概率,求事件A:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”的頻率P(A);(3)求的分布列及數(shù)學期望E。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)盒子里裝有6件包裝完全相同的產(chǎn)品,已知其中有2件次品,其余4件是合格品。為了找到2件次品,只好將盒子里的這些產(chǎn)品包裝隨機打開檢查,直到兩件次品被全部檢查或推斷出來為止。記表示將兩件次品被全部檢查或推斷出來所需檢查次數(shù)。
(I)求兩件次品被全部檢查或推斷出來所需檢查次數(shù)恰為4次的概率;
(II)求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某校高三年級要從名男生名女生中任選名代表參加學校的演講比賽。
(I)求男生被選中的概率
(II)求男生和女生至少一人被選中的概率。

查看答案和解析>>

同步練習冊答案