(本小題滿分12分)某班從6名班干部中(男生4人,女生2人)選3人參加學(xué)校義務(wù)勞動(dòng);(1)求男生甲或女生乙被選中的概率;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率;
(3)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望。

(1);(2);
(3)


0
1
2




解析試題分析:(1)……………………………………………………………4分
(2)………………………………………………………………….……..8分
(3)


0
1
2




………………………………………………………………… ………..12分
考點(diǎn):離散型隨機(jī)變量的期望與方差;等可能事件的概率。
點(diǎn)評(píng):本題主要考查等可能事件的概率與離散型隨機(jī)變量的分布列、期望與方差等知識(shí)點(diǎn),屬于中檔題型,高考命題的趨向.分布列的求解應(yīng)注意以下幾點(diǎn):(1)弄清隨機(jī)變量每個(gè)取值對(duì)應(yīng)的隨機(jī)事件;(2)計(jì)算必須準(zhǔn)確無誤;(3)注意用分布列的兩條性質(zhì)檢驗(yàn)所求的分布列是否正確。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)編號(hào)依次為1,2,3,4,5.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取20件,對(duì)其等級(jí)編號(hào)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

等級(jí)
 
1
 
2
 
3
 
4
 
5
 
頻率
 
a
 
0.2
 
0.45
 
b
 
c
 
(1)若所抽取的20件產(chǎn)品中,等級(jí)編號(hào)為4的恰有3件,等級(jí)編號(hào)為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級(jí)編號(hào)為4的3件產(chǎn)品記為xl,x2,x3,等級(jí)編號(hào)為5的2件產(chǎn)品記為yl ,y2,現(xiàn)從xl,x2,x3,yl,y2這5件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件品的級(jí)編號(hào)恰好相同的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),求:
(1)點(diǎn)P在直線上的概率;
(2)點(diǎn)P在圓外的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)甲盒中有紅,黑,白三種顏色的球各3個(gè),乙盒子中有黃,黑,白三種顏色的球各2個(gè),從兩個(gè)盒子中各取1個(gè)球,求取出的兩個(gè)球是不同顏色的概率。
(2)在單位圓的圓周上隨機(jī)取三點(diǎn)A、B、C,求是銳角三角形的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測(cè)量產(chǎn)品中的微量元素,的含量(單位:毫克)下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):

編號(hào)
1
2
3
4
5

160
178
166
175
180

75
80
77
70
81
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)若為次品,從乙廠抽出的上述5件產(chǎn)品中,有放回的隨機(jī)抽取1件產(chǎn)品,抽到次品則停止抽取,否則繼續(xù)抽取,直到抽出次品為止,但抽取次數(shù)最多不超過3次,求抽取次數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.(Ⅰ)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù), 可取何值?請(qǐng)求出相應(yīng)的值的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
甲、乙兩運(yùn)動(dòng)員進(jìn)行射擊訓(xùn)練,已知他們擊中的環(huán)數(shù)都穩(wěn)定在8,9,10環(huán),且每次射擊擊中與否互不影響.甲、乙射擊命中環(huán)數(shù)的概率如表:

 
8環(huán)
9環(huán)
10環(huán)

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙兩運(yùn)動(dòng)員各射擊1次,求甲運(yùn)動(dòng)員擊中8環(huán)且乙運(yùn)動(dòng)員擊中9環(huán)的概率;
(Ⅱ)若甲、乙兩運(yùn)動(dòng)員各自射擊2次,求這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 某工廠組織工人參加上崗測(cè)試,每位測(cè)試者最多有三次機(jī)會(huì),一旦某次測(cè)試通過,便可上崗工作,不再參加以后的測(cè)試;否則就一直測(cè)試到第三次為止。設(shè)每位工人每次測(cè)試通過的概率依次為0.2,0.5,0.5,每次測(cè)試相互獨(dú)立。
(1)求工人甲在這次上崗測(cè)試中參加考試次數(shù)為2、3的概率分別是多少?
(2)若有4位工人參加這次測(cè)試,求至少有一人不能上崗的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,平面區(qū)域中的點(diǎn)的坐標(biāo)滿足,從區(qū)域中隨機(jī)取點(diǎn)
(Ⅰ)若,,求點(diǎn)位于第四象限的概率;
(Ⅱ)已知直線與圓相交所截得的弦長(zhǎng)為,求的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案