【題目】如圖,已知直角梯形所在的平面垂直于平面,.
(1)在直線上是否存在一點,使得平面?請證明你的結論.
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(1) 點為線段的中點就是滿足條件,證明見解析;(2).
【解析】
試題分析:(1)線段的中點就是滿足條件的點.證明如下:取的中點連接 .取的中點,連接.由且 是正三角形四邊形為矩形,又且,即四邊形是平行四邊形平面; (2)做輔助線,由
是平面與平面所成二面角的棱.又平面,平面平面是所求二面角的平面角,再設
.
試題解析: (1)線段的中點就是滿足條件的點.
證明如下:
取的中點連接,則.
取的中點,連接.
且, 是正三角形,
,四邊形為矩形.
又,
且,即四邊形是平行四邊形..
而平面,平面.
(2)過點作的平行線,過點作的垂線交于點,連接.
,.是平面與平面所成二面角的棱.
平面,,平面.
又平面,.平面,.是所求二面角的平面角.
設,則.
..
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),下列說法正確的是( )
A. 該函數(shù)值域為
B. 當且僅當時,函數(shù)取最大值1
C. 該函數(shù)是以為最小正周期的周期函數(shù)
D. 當時,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
(1)根據(jù)散點圖判斷, 與哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說出理由);
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立關于的回歸方程;
(3)已知這種產品的年利潤與的關系為,根據(jù)(2)的結果求:年宣傳費為何值時,年利潤最大?
附:對于一組數(shù)據(jù), ,…,其回歸直線的斜率和截距的最小二乘估計分別為, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.
(1)求分數(shù)在的頻率及全班人數(shù);
(2)求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;
(3)若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D中,M為DD1的中點,O為AC的中點,AB=2.
(I)求證:BD1∥平面ACM;
(Ⅱ)求證:B1O⊥平面ACM;
(Ⅲ)求三棱錐O-AB1M的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其他費用組成.已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數(shù)為),其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.
(1)請將從甲地到乙地的運輸成本(元)表示為航行速度(海里/小時)的函數(shù);
(2)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com