17、如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC.
分析:(1)令E為PD的中點(diǎn),連接AE,NE,根據(jù)三角形中位線(xiàn)定理,及中點(diǎn)的定義,我們易判斷MN∥AE,結(jié)合線(xiàn)面平行的判定定理,即可得到MN∥平面PAD;
(2)根據(jù)已知中,四邊形ABCD 是矩形,PA⊥平面ABCD,我們易結(jié)合線(xiàn)面垂直的判定定理,得到DC⊥平面PAD,進(jìn)而得到DC⊥AE,由(1)中AE∥MN,根據(jù)兩條平行線(xiàn)與同一條直線(xiàn)的夾角相等,即可得到結(jié)論.
解答:證明:(1)設(shè)PD的中點(diǎn)為E,連AE,NE,
則易得四邊形AMNE是平行四邊形
則MN∥AE,MN?平面PAD,AE?平面PAD
所以MN∥平面PAD
(2)∵PA⊥平面ABCD,CD?平面ABCD
∴PA⊥CD
又AD⊥CD,PA∩DA=A
∴CD⊥平面PAD
∵AE?平面PAD
∴CD⊥AE
∵M(jìn)N∥AE
∴MN⊥DC
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線(xiàn)與平面平行的判定,直線(xiàn)與平面垂直的性質(zhì),其中熟練掌握線(xiàn)面平行及線(xiàn)面垂直的判定定理及證明步驟是解答此類(lèi)問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線(xiàn)MN切
⊙O于D,∠MDA=45°,則∠DCB=
135°
135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線(xiàn)段PB,AD的中點(diǎn)
(1)求證:FE∥平面PCD;
(2)求異面直線(xiàn)DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點(diǎn),F(xiàn)是PD的中點(diǎn).
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案