【題目】已知函數(shù)

1)求處的切線(xiàn)方程:

2)已知實(shí)數(shù)時(shí),求證:函數(shù)的圖象與直線(xiàn)3個(gè)交點(diǎn).

【答案】12)見(jiàn)解析

【解析】

1)求出原函數(shù)的導(dǎo)函數(shù),可得,再求出切點(diǎn)為(1,0),利用直線(xiàn)方程的點(diǎn)斜式可得函數(shù)的圖象在處的切線(xiàn)方程;

2)函數(shù)的圖象與直線(xiàn)交點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)的零點(diǎn)個(gè)數(shù),通過(guò)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求函數(shù)的最值同0進(jìn)行比較,得到結(jié)果.

1)因?yàn)?/span>,所以,

所以,

又因?yàn)?/span>,所以處的切線(xiàn)方程;

2)證明:當(dāng)時(shí),函數(shù)的圖象與直線(xiàn)交點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)的零點(diǎn)個(gè)數(shù),

因?yàn)?/span>,,

設(shè),

因?yàn)槎魏瘮?shù)時(shí),,,

所以存在,,使得,,

所以單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.

因?yàn)?/span>,所以,,

因此存在一個(gè)零點(diǎn);

又因?yàn)楫?dāng),

所以存在一個(gè)零點(diǎn);

當(dāng)時(shí),,

所以存在一個(gè)零點(diǎn);

所以,函數(shù)的圖象與直線(xiàn)3個(gè)交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義行列式的運(yùn)算如下:,已函數(shù)以下命題正確的是(

①對(duì),都有;②若,對(duì),總存在非零常數(shù)了,使得;③若存在直線(xiàn)的圖象無(wú)公共點(diǎn),且使的圖案位于直線(xiàn)兩側(cè),此直線(xiàn)即稱(chēng)為函數(shù)的分界線(xiàn).的分界線(xiàn)的斜率的取值范圍是;④函數(shù)的零點(diǎn)有無(wú)數(shù)個(gè).

A.①③④B.①②④

C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

1)求橢圓的方程;

2)若斜率為的直線(xiàn)與橢圓交于不同的兩點(diǎn),且線(xiàn)段的垂直平分線(xiàn)過(guò)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,PCBC,點(diǎn)EPC的中點(diǎn),且平面PBC⊥平面ABCD.求證:

1)求證:PA∥平面BDE

2)求證:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)在歐洲的某孔子學(xué)院為了讓更多的人了解中國(guó)傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場(chǎng)由當(dāng)?shù)厝藚⒓拥闹袊?guó)傳統(tǒng)文化知識(shí)大賽,為了了解參加本次大賽參賽人員的成績(jī)情況,從參賽的人員中隨機(jī)抽取名人員的成績(jī)(滿(mǎn)分100分)作為樣本,將所得數(shù)據(jù)進(jìn)行分析整理后畫(huà)出頻率分布直方圖如圖所示,已知抽取的人員中成績(jī)?cè)?/span>[50,60)內(nèi)的頻數(shù)為3.

1)求的值和估計(jì)參賽人員的平均成績(jī)(保留小數(shù)點(diǎn)后兩位有效數(shù)字);

2)已知抽取的名參賽人員中,成績(jī)?cè)?/span>[80,90)和[90,100]女士人數(shù)都為2人,現(xiàn)從成績(jī)?cè)?/span>[80,90)和[90100]的抽取的人員中各隨機(jī)抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn),斜率為的直線(xiàn)x軸交于點(diǎn)A,與y軸交于點(diǎn),過(guò)x 軸的平行線(xiàn),交于點(diǎn),過(guò)y軸的平行線(xiàn),交于點(diǎn),再過(guò)x軸的平行線(xiàn)交于點(diǎn),這樣依次得線(xiàn)段、、、、,記為點(diǎn)的橫坐標(biāo),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(其中,點(diǎn)P的軌跡記為曲線(xiàn),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)Q在曲線(xiàn)上.

1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

2)當(dāng),時(shí),求曲線(xiàn)與曲線(xiàn)的公共點(diǎn)的極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某外賣(mài)平臺(tái)為提高外賣(mài)配送效率,針對(duì)外賣(mài)配送業(yè)務(wù)提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣(mài)騎手,并將他們隨機(jī)分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據(jù)騎手在相同時(shí)間內(nèi)完成配送訂單的數(shù)量(單位:?jiǎn)危├L制了如下莖葉圖:

1)根據(jù)莖葉圖,求各組內(nèi)25位騎手完成訂單數(shù)的中位數(shù),已知用甲配送方案的25位騎手完成訂單數(shù)的平均數(shù)為52,結(jié)合中位數(shù)與平均數(shù)判斷哪種配送方案的效率更高,并說(shuō)明理由;

2)設(shè)所有50名騎手在相同時(shí)間內(nèi)完成訂單數(shù)的平均數(shù),將完成訂單數(shù)超過(guò)記為“優(yōu)秀”,不超過(guò)記為“一般”,然后將騎手的對(duì)應(yīng)人數(shù)填入下面列聯(lián)表;

優(yōu)秀

一般

甲配送方案

乙配送方案

3)根據(jù)(2)中的列聯(lián)表,判斷能否有的把握認(rèn)為兩種配送方案的效率有差異.

附:,其中.

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),過(guò)的直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn).

1)若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn),求面積的最小值;

2)是否存在垂直于軸的直線(xiàn),使得被以為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出的方程和定值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案