【題目】已知直線l的參數方程為 (t為參數),曲線C的極坐標方程是ρ= ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
科目:高中數學 來源: 題型:
【題目】某中學調查了某班全部45名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 5 |
未參加演講社團 | 2 | 30 |
(1)從該班隨機選1名同學,求該同學至少參加一個社團的概率;
(2)在既參加書法社團又參加演講社團的8名同學中,有5名男同學A1,A2,A3,A4,A5,3名女同學B1,B2,B3.現從這5名男同學和3名女同學中各隨機選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數是偶函數;
③f(x)在區(qū)間[﹣ , ]上單調遞增;
④f(x)的圖象關于直線x= 對稱.
其中正確說法的序號是( )
A.②③
B.①④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,。
Ⅰ.求函數的最小正周期和單調遞增區(qū)間;
Ⅱ.當時,方程恰有兩個不同的實數根,求實數的取值范圍;
Ⅲ.將函數的圖象向右平移個單位后所得函數的圖象關于原點中心對稱,求的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域為R,并且圖象關于y軸對稱,當x≤-1時,y=f(x)的圖象是經過點(-2,0)與(-1,1)的射線,又在y=f(x)的圖象中有一部分是頂點在(0,2),且經過點(1,1)的一段拋物線.
(1)試求出函數f(x)的表達式,作出其圖象;
(2)根據圖象說出函數的單調區(qū)間,以及在每一個單調區(qū)間上函數是增函數還是減函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究型學習小組調查研究學生使用智能手機對學習的影響,部分統(tǒng)計數據如右表,則下列說法正確的是( )
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
參考公式: ,其中.
參考數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.9%的把握認為使用智能手機對學習有影響.
B. 有99.9%的把握認為使用智能手機對學習無影響.
C. 在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習有影響.
D. 在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習無影響.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com