【題目】已知橢圓的兩個焦點分別為, ,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)的頂點都在橢圓上,其中關于原點對稱,試問能否為正三角形?并說明理由.
【答案】(Ⅰ) ;(Ⅱ) 不可能為正三角形,理由見解析.
【解析】試題分析:
(Ⅰ)設橢圓的標準方程為,依題意得,利用橢圓的定義可得,則橢圓的標準方程為.
(Ⅱ)若為正三角形,則且,
顯然直線的斜率存在且不為0,設方程為,聯(lián)立直線方程與橢圓方程可得, ,則,同理可得.據(jù)此可得關于實數(shù)k的方程,方程無解,則不可能為正三角形.
試題解析:
(Ⅰ)設橢圓的標準方程為,
依題意得,
,
所以, ,
故橢圓的標準方程為.
(Ⅱ)若為正三角形,則且,
顯然直線的斜率存在且不為0,
設方程為,
則的方程為,聯(lián)立方程,
解得, ,
所以,
同理可得.
又,所以,
化簡得無實數(shù)解,
所以不可能為正三角形.
科目:高中數(shù)學 來源: 題型:
【題目】某公司的管理者通過公司近年來科研費用支出x(百萬元)與公司所獲得利潤y(百萬元)的散點圖發(fā)現(xiàn),y與x之間具有線性相關關系,具體數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
科研費用x(百萬元) | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
公司所獲利潤y(百萬元) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求y關于x的回歸直線方程;
(2)若該公司的科研投入從2011年開始連續(xù)10年每一年都比上一年增加10萬元,預測2017年該公司可獲得的利潤約為多少萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題;命題:函數(shù)在區(qū)間上為減函數(shù).
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“或”為真命題,且“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓C: =1的離心率e= ,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標原點,試證明當切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,,,其中0<α<x<π.
(1)若α=,求函數(shù)的最小值及相應x的值;
(2)若與的夾角為,且,求tan 2α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程是ρ= ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣2|+|x+a|(a∈R).
(1)若a=1時,求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com