在平面內,三角形的面積為S,周長為C,則它的內切圓的半徑.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內切球(球面與三棱錐的各個面均相切)的半徑R=______________________。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF ⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′—ABCP.
(I)求證D′F⊥AP;


 
  (II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′—ABCP的體積

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,分別是的中點.
 
(1)證明;     (2)求所成的角;
(3)證明面;(4)的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,四棱錐中,底面是矩形,平面,分別是的中點,
(1)求證:平面;
(2)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知三棱錐P—ABC中,PC⊥底面ABC,,,二面角P-AB-C為,D、F分別為AC、PC的中點,DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;                
(Ⅱ)求平面BEF與平面BAC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
在長方體中,,過、、三點的平面截去長方體的一個角后,得到如圖所示的幾何體,且這個幾何體的體積為
(1)求棱的長;
(2)若的中點為,求異面直線所成角的大。ńY果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖:在四棱錐中,底面ABCD是菱形,,平面ABCD,點M,N分別為BC,PA的中點,且
(I)證明:平面AMN;
(II)求三棱錐N的體積;
(III)在線段PD上是否存在一點E,使得平面ACE;若存在,求出PE的長,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

長方體各面上的對角線所確定的平面?zhèn)數(shù)是(    )
A.20B.14 C.12D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體--,E、F分別是、的中點,p是上的動點(包括端點),過E、D、P作正方體的截面,若截面為四邊形,則P的軌跡是
A.線段   B、線段    C、線段和一點     D、線段和一點C。

查看答案和解析>>

同步練習冊答案