如圖,在正方體中,分別是的中點(diǎn).
 
(1)證明;     (2)求所成的角;
(3)證明面;(4)的體積
(1)證明見解析     (2)直線所成角為直角   
(3) 證明見解析    (4)1
(1)∵是正方體,∴. 
,  ∴.           
(2)取中點(diǎn),連結(jié).因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135708398200.gif" style="vertical-align:middle;" />是的中點(diǎn),所以平行且相等,又平行且相等,所以、平行且相等,故是平行四邊形,
設(shè)相交于點(diǎn),則所成的角,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135708710204.gif" style="vertical-align:middle;" />是的中點(diǎn),所以,
從而,即直線所成角為直角.
(3)由(1)知,由(Ⅱ)知,又
所以⊥面
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135708960395.gif" style="vertical-align:middle;" />,所以面.    
(4)連結(jié),,∵,∴,
,面積
  ,

     
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖6,已知正三棱柱ABC—A1B1C1中,D是BC的中點(diǎn),AA1=AB=1。
(1)求證:平面AB1D⊥平面B1BCC1
(2)求證:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,在幾何體中,四邊形為矩形,平面,。
(1)當(dāng)時,求證:平面平面;
(2)若所成角為45°,求幾何體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱錐P-ABC中,三側(cè)棱PA、PB、PC兩兩相互垂直,三側(cè)面面積分
別為S1、S2、S3,底面積為S,三側(cè)面與底面分別成角α、β、γ,(1)求S(用S1、S2、S3表示);(2)求證:cos2α+cos2β+cos2γ=1;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四棱錐中,側(cè)面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是面積為的菱形,為銳角,M為PB的中點(diǎn)。
(1)求證
(2)求二面角的大小
(3)求P到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

矩形ABCD與矩形ABEF的公共邊為AB,且平面ABCD平面ABEF,如圖所示,F(xiàn)D, AD=1, EF=

(Ⅰ)證明:AE 平面FCB;
(Ⅱ)求異面直線BD與AE所成角的余弦值
(Ⅲ)若M是棱AB的中點(diǎn),在線段FD上是否存在一點(diǎn)N,使得MN∥平面FCB?
證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題











(1)證明:;
(2)若上的動點(diǎn),與平面所成最大角的正切值為,求銳二面角的余弦值;
(3)在(2)的條件下,設(shè),求點(diǎn)到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面內(nèi),三角形的面積為S,周長為C,則它的內(nèi)切圓的半徑.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內(nèi)切球(球面與三棱錐的各個面均相切)的半徑R=______________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若梯形的中位線被它的兩條對角線三等分,則梯形的上底a與下底b(a<b)的比是( 。
A.      B.         C.        D.

查看答案和解析>>

同步練習(xí)冊答案